[1] |
中国互联网信息中心.第42次《中国互联网络发展状况统计报告》[EB/OL].[2018-08-20].http://www.cnnic.net.cn.
|
[2] |
BALASUBRAMANYAN R,ROUTLEDGE B R,SMITH N R.From tweets to polls:linking text sentiment to public opinion time series[C]//Proceedings of International Conference on Weblogs and Social Media.Reston,USA:AIAA Press 2010:122-129.
|
[3] |
STEINSKOGA O,THERKELSEN J F,GAMBÄCK B.Twitter topic modeling by tweet aggregation[EB/OL].[2018-08-20].https://www.aclweb.org/anthology/W17-0210.
|
[4] |
郭庆琳,李艳梅,唐琦.基于VSM的文本相似度计算的研究[J].计算机应用研究,2008,25(11):3256-3258.
|
[5] |
孙励.基于微博的热点话题发现[D].北京:北京邮电大学,2013.
|
[6] |
刘红兵,李文坤,张仰森.基于LDA模型和多层聚类的微博话题检测[J].计算机技术与发展,2016,26(6):25-30.
|
[7] |
叶成绪,杨萍,刘少鹏.基于主题词的微博热点话题发现[J].计算机应用与软件,2016,33(2):46-50.
|
[8] |
张群,王红军,王伦文.词向量与LDA相融合的短文本分类方法[J].现代图书情报技术,2016(12):27-35.
|
[9] |
MIKOLOV T,LE Q V,SUTSKEVER H,et al.Exploiting similarities among languages for machine translation[EB/OL].[2018-08-20].https://arxiv.org/pdf/1309.4168v1.pdf.
|
[10] |
BOJANOWSKI P,GRAVE E,JOULIN A,et al.Enriching word vectors with subword information[EB/OL].[2018-08-20].https://arxiv.org/pdf/1607.04606.pdf.
|
[11] |
MIKOLOV T,CHEN Kai,CORRADO G,et al.Efficient estimation of word representations in vector space[EB/OL].[2018-08-20].https://arxiv.org/pdf/1301.3781.pdf.
|
[12] |
陈红阳.中文微博话题发现技术研究[D].重庆:重庆理工大学,2015.
|
[13] |
黄贤英,刘英涛,饶勤菲.一种基于公共词块的英文短文本相似度算法[J].重庆理工大学学报(自然科学版):2015,29(8):88-93.
|
[14] |
BLEI D M,NG A Y,JORDAN M I.Latent Dirichlet allocation[J].Journal of Machine Learning Research,2003,3:993-1022.
|
[15] |
MIMNO D,WALLACH H M,TAL-LEY E,et al.Optimizing semantic coherence in topic models[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing.Stroudsburg,USA:Association for Computational Linguistics,2011:262-272.
|