[1] HUANG Liwei,JIANG Bitao,LU Shouye,et al.Survey on deep learning based recommender systems[J].Chinese Journal of Computers,2018,41(7):1619-1647.(in Chinese) 黄立威,江碧涛,吕守业,等.基于深度学习的推荐系统研究综述[J].计算机学报,2018,41(7):1619-1647. [2] WANG Yubin,MENG Xiangwu,HU Xun.Information aging-based collaborative filtering recommendation algorithm[J].Journal of Electronics & Information Technology,2013,35(10):2391-2396.(in Chinese) 王玉斌,孟祥武,胡勋.一种基于信息老化的协同过滤推荐算法[J].电子与信息学报,2013,35(10):2391-2396. [3] LI Gai,CHEN Qiang,LI Lei.Information aging-based collaborative filtering recommendation algorithm[J].Journal of Electronics and Information Technology,2017,45(12):3070-3075.(in Chinese) 李改,陈强,李磊.基于评分预测与排序预测的协同过滤推荐算法[J].电子学报,2017,45(12):3070-3075. [4] RONG Huigui,HUO Shengxu,HU Chunhua,et al.User similarity-based collaborative filtering recommendation algorithm[J].Journal on Communications,2014,35(2):16-24.(in Chinese) 荣辉桂,火生旭,胡春华,等.基于用户相似度的协同过滤推荐算法[J].通信学报,2014,35(2):16-24. [5] YANG Xingyu,LI Huaping,ZHANG Yubo.Collaborative filtering algorithm based on clustering and random for-ests[J].Computer Engineering and Applications,2018,54(16):152-157.(in Chinese) 杨兴雨,李华平,张宇波.基于聚类和随机森林的协同过滤推荐算法[J].计算机工程与应用,2018,54(16):152-157. [6] ZHANG Z,CUFF P,KULKARNI S.Iterative collaborative filtering for recommender systems with sparse data[C]//Proceedings of IEEE International Workshop on Machine Learning for Signal Processing.Santander,UK:IEEE Press,2012:1-6. [7] SUN Baoshan,DONG Lingyu.Dynamic model adaptive to user interest drift based on cluster and nearest neighbors[J].IEEE Access,2017,5:1682-1691. [8] LUO Xin,ZHOU Mengchu,XIA Yunni,et al.An efficient non-negative matrix-factorization-based approach to collaborative filtering for recommender systems[J].IEEE Transactions on Industrial Informatics,2014,10(2):1273-1284. [9] PAN Taotao,WEN Feng,LIU Qinrang.Collaborative filtering recommendation algorithm based on rating matrix filling and item predictability[J].Acta Automatica Sinica,2017,43(9):1597-1606.(in Chinese) 潘涛涛,文锋,刘勤让.基于矩阵填充和物品可预测性的协同过滤算法[J].自动化学报,2017,43(9):1597-1606. [10] SURYAVANSHI B S,SHIN N,MUDUR S P.Improving the effectiveness of model based recommender systems for highly sparse and noisy Web usage data[C]//Proceedings of IEEE/WIC/ACM International Conference on Web Intelligence.Compiegne,France:IEEE Press,2005:618-621. [11] YAN Ying,YAN Cao.Collaborative filtering recommendation combining FCM and slope one algorithm[C]//Proceedings of International Conference on Informative and Cybernetics for Computational Social Systems.Chengdu,China:[s.n.],2015:110-115. [12] ZHANG Yanmei,WANG Lu.Research on social tagging recommendation algorithm incorporated with user interest change[J].Computer Engineering,2014,40(11):318-321.(in Chinese) 张艳梅,王璐.适应用户兴趣变化的社会化标签推荐算法研究[J].计算机工程,2014,40(11):318-321. [13] SUN Guangfu,WU Le,LIU Qi,et al.Recommendations based on collaborative filtering by exploiting sequential behaviors[J].Journal of Software,2013,24(11):2721-2733.(in Chinese) 孙光福,吴乐,刘淇,等.基于时序行为的协同过滤推荐算法[J].软件学报,2013,24(11):2721-2733. [14] HAN Yanan,CAO Han,LIU Liangliang.Collaborative filtering recommendation algorithm based on score matrix filling and user interest[J].Computer Engineering,2016,42(1):36-40.(in Chinese) 韩亚楠,曹菡,刘亮亮.基于评分矩阵填充与用户兴趣的协同过滤推荐算法[J].计算机工程,2016,42(1):36-40. [15] CHEN Kehan,HAN Panpan,WU Jian.User clustering based social network recommendation[J].Chinese Journal of Computers,2013,36(2):349-359.(in Chinese) 陈克寒,韩盼盼,吴健.基于用户聚类的异构社交网络推荐算法[J].计算机学报,2013,36(2):349-359. [16] SUN Jigui,LIU Jie,ZHAO Lianyu.Research on clustering algorithm[J].Journal of Software,2008,19(1):48-61.(in Chinese)孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008,19(1):48-61. [17] ZHAN Shichang.The available range of Newton's law of cooling[J].College Physics,2000,19(5):36-37.(in Chinese)詹士昌.牛顿冷却定律适用范围的探讨[J].大学物理,2000,19(5):36-37. [18] LI Shiwei.Research and application of recommendation system based on collaborative filtering algorithm[D].Beijing:Beijing University of Technology,2017.(in Chinese)李世伟.基于协同过滤算法的推荐系统研究与应用[D].北京:北京工业大学,2017. [19] GAO Yukai,WANG Xinhua,GUO Lei,et al.Learning to recommend with collaborative matrix factorization for new users[J].Journal of Computer Research and Development,2017,54(8):1813-1823.(in Chinese)高玉凯,王新华,郭磊,等.一种基于协同矩阵分解的用户冷启动推荐算法[J].计算机研究与发展,2017,54(8):1813-1823. [20] ZENG An,GAO Chengsi,XU Xiaoqiang.Collaborative filtering algorithm incorporating time factor and user preference properties[J].Computer Science,2017,44(9):243-249.(in Chinese)曾安,高成思,徐小强.融合时间因素和用户评分特性的协同过滤算法[J].计算机科学,2017,44(9):243-249. [21] YUAN Hanning,ZHOU Tong,HAN Yanni,et al.Collaborative recommendation algorithm based on MI clustering[J].Geomatics and Information Science of Wuhan University,2015,40(2):253-257.(in Chinese)袁汉宁,周彤,韩言妮,等.基于MI聚类的协同推荐算法[J].武汉大学学报(信息科学版),2015,40(2):253-257. |