[1] SPIRTES P, GLYMOUR C N, SCHEINES R. Causation,
prediction, and search[M]. USA: MIT press, 2000.
[2] PEARL J. Causality: models, reasoning and inference[M].
England: Cambridge university press, 2009.
[3] CAI Ruichu, CHEN Wei, ZHANG Kun, et al. A Survey on
Non-Temporal Series Observational Data based Causal
Discovery[J]. Chinese Journal of Computers, 2017, 40(06):
1470-1490.
蔡瑞初, 陈薇, 张坤, 等. 基于非时序观察数据的因果
关系发现综述[J]. 计算机学报, 2017, 40(06): 1470–1490.
[4] CAI R, ZHANG Z, HAO Z, et al. Understanding social
causalities behind human action sequences[J]. IEEE Trans
on neural networks and learning systems, IEEE, 2016,
28(8): 1801–1813.
[5] RUNGE J, BATHIANY S, BOLLT E, et al. Inferring
causation from time series in Earth system sciences[J].
Nature communications, 2019, 10(1): 1–13.
[6] CAI R, ZHANG Z, HAO Z. Causal gene identification
using combinatorial V-structure search[J]. Neural
Networks, 2013, 43(1): 63–71.
[7] HERNÁN M A, ROBINS J M. Causal inference[M]. USA:
CRC Boca Raton, FL;, 2010.
[8] MOOIJ J M, PETERS J, JANZING D, et al.
Distinguishing cause from effect using observational data:
methods and benchmarks[J]. The Journal of Machine
Learning Research, 2016, 17(1): 1103–1204.
[9] COLOMBO D, MAATHUIS M H, KALISCH M, et al.
Learning high-dimensional directed acyclic graphs with
latent and selection variables[J]. The Annals of Statistics,
JSTOR, 2012, 40(1): 294–321.
[10] OGARRIO J M, SPIRTES P, RAMSEY J. A Hybrid
Causal Search Algorithm for Latent Variable Models[C]//Probabilistic Graphical Models - Eighth International
Conference, PGM 2016, Lugano, Switzerland, September
6-9, 2016. Proceedings. 2016, 52: 368–379.
[11] CAI R, QIAO J, ZHANG K, et al. Causal discovery with
cascade nonlinear additive noise models[C]// Proceedings
of the 28th International Joint Conference on Artificial
Intelligence. Palo Alto, CA: AAAI Press, 2019:
1609–1615.
[12] BRESSLER S L, SETH A K. Wiener–Granger causality: a
well established methodology[J]. Neuroimage, Elsevier,
2011, 58(2): 323–329.
[13] ZHANG Yijie, LI Peifeng, ZHU Qiaoming. Joint
Identification Method for Temporal and Causal Relations
of Events[J]. Computer Engineering, 2020, 46(07): 65–71.
张义杰, 李培峰, 朱巧明. 面向事件时序与因果关系的
联合识别方法[J]. 计算机工程, 2020, 46(07): 65–71.
[14] LAM W, BACCHUS F. Learning Bayesian belief networks:
An approach based on the MDL principle[J].
Computational intelligence, Wiley Online Library, 1994,
10(3): 269–293.
[15] ANDERSSON S A, MADIGAN D, PERLMAN M D, et al.
A characterization of Markov equivalence classes for
acyclic digraphs[J]. The Annals of Statistics, Institute of
Mathematical Statistics, 1997, 25(2): 505–541.
[16] SHIMIZU S, HOYER P O, HYVÄRINEN A, et al. A
linear non-Gaussian acyclic model for causal discovery[J].
Journal of Machine Learning Research, 2006, 7(Oct):
2003–2030.
[17] JIANG Feng, ZHU Hui-sheng, WANG Wei. Estimation
Algorithm for Non-Gaussian Acyclic Causal Model with
Latent Variables[J]. Computer Engineering, 2010, 36(09):
178–180.
姜枫, 朱辉生, 汪卫. 含隐变量非高斯无环因果模型的
估计算法[J]. 计算机工程, 2010, 36(09): 178–180.
[18] HOYER P, JANZING D, MOOIJ J M, et al. Nonlinear
causal discovery with additive noise models[C]//
Proceedings of the Twenty-Second Annual Conference on
Neural Information Processing Systems. New York,NY:
NIPS, 2008, 21: 689–696.
[19] ZHANG K, HYVÄRINEN A. On the Identifiability of the
Post-Nonlinear Causal Model[C]// UAI 2009, Proceedings
of the Twenty-Fifth Conference on Uncertainty in Artificial
Intelligence. Corvallis, USA: AUAI Press, 2009: 647–655.
[20] HOYER P O, SHIMIZU S, KERMINEN A J, et al.
Estimation of causal effects using linear non-Gaussian
causal models with hidden variables[J]. International
Journal of Approximate Reasoning, 2008, 49(2): 362–378.
[21] KINGMA D P, WELLING M. Auto-Encoding Variational
Bayes[C]// the 2nd International Conference on Learning
Representations, ICLR. 2014.
[22] HORNIK K, STINCHCOMBE M B, WHITE H.
Multilayer feedforward networks are universal
approximators[J]. Neural Networks, 1989, 2(5): 359–366.
[23] GÁMEZ J A, MATEO J L, PUERTA J M. Learning
Bayesian networks by hill climbing: efficient methods
based on progressive restriction of the neighborhood[J].
Data Mining and Knowledge Discovery, Springer, 2011,
22(1–2): 106–148.
[24] TSAMARDINOS I, BROWN L E, ALIFERIS C F. The
max-min hill-climbing Bayesian network structure
learning algorithm[J]. Machine learning, 2006, 65(1):
31–78.
|