[1] SEO M, KEMBHAVI A, FARHADI A, et al.Bidirectional attention flow for machine comprehension[EB/OL].[2020-10-11].https://arxiv.org/abs/1611.01603v6. [2] XIONG C M, VICTOR Z, RICHARD S.Dynamic coattention networks for question answering[C]//Proceedings of the 5th International Conference on Learning Representations.Toulon, France:[s.n.], 2017:1-8. [3] LIU X, SHEN Y, DUH K, et al.Stochastic answer networks for machine reading comprehension[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics.Stroudsburg, USA:Association for Computational Linguistics, 2018:1694-1704. [4] CHEN D Q, FISCH A, WESTON J, et al.Reading Wikipedia to answer open-domain questions[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.Stroudsburg, USA:Association for Computational Linguistics, 2017:1870-1879. [5] CLARK C, GARDNER M.Simple and effective multi-paragraph reading comprehension[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics.Stroudsburg, USA:Association for Computational Linguistics, 2018:845-855. [6] 万静, 郭雅志.基于多段落排序的机器阅读理解研究[J].北京化工大学学报(自然科学版), 2019, 46(3):93-98. WAN J, GUO Y Z.Machine reading comprehension based on multi-passage ranking[J].Journal of Beijing University of Chemical Technology(Natural Science Edition), 2019, 46(3):93-98.(in Chinese) [7] 吴睿智, 朱大勇, 王春雨, 等.基于图卷积神经网络的位置语义推断[J].电子科技大学学报, 2020, 49(5):739-744. WU R Z, ZHU D Y, WANG C Y, et al.Location semantics inference with graph convolutional networks[J].Journal of University of Electronic Science and Technology of China, 2020, 49(5):739-744.(in Chinese) [8] 许力, 李建华.基于句法依存分析的图网络生物医学命名实体识别[J].计算机应用, 2021, 41(2):357-362. XU L, LI J H.Biomedical named entity recognition with graph network based on syntactic dependency parsing[J].Journal of Computer Applications, 2021, 41(2):357-362.(in Chinese) [9] DHINGRA B, JIN Q, YANG Z L, et al.Neural models for reasoning over multiple mentions using coreference[C]//Proceedings of 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.Stroudsburg, USA:Association for Computational Linguistics, 2018:42-48. [10] DE CAO N, AZIZ W, TITOV I.Question answering by reasoning across documents with graph convolutional networks[EB/OL].[2020-10-11].https://arxiv.org/abs/1808.09920v1. [11] SONG L F, WANG Z G, YU M, et al.Evidence integration for multi-hop reading comprehension with graph neural networks[EB/OL].[2020-10-11].https://www.researchgate.net/publication/340326781_Evidence_Integration_for_Multi-hop_Reading_Comprehension_with_Graph_Neural_Networks. [12] CHEN J F, LIN S T, DURRETT G.Multi-hop question answering via reasoning chains[EB/OL].[2020-10-11].https://arxiv.org/abs/1910.02610. [13] TU M, WANG G T, HUANG J, et al.Multi-hop reading comprehension across multiple documents by reasoning over heterogeneous graphs[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.Stroudsburg, USA:Association for Computational Linguistics, 2019:2704-2713. [14] CAO Y, FANG M, TAO D.BAG:bi-directional attention entity graph convolutional network for multi-hop reasoning question answering[C]//Proceedings of 2019 Conference of the North American Chapter of the Association of Computational Linguistics:Human Language Technologies.Stroudsburg, USA:Association for Computational Linguistics, 2019:357-362. [15] PETERS M, NEUMANN M, IYYER M, et al.Deep contextualized word representations[C]//Proceedings of 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.Stroudsburg, USA:Association for Computational Linguistics, 2018:2227-2237. [16] HEWLETT D, LACOSTE A, JONES L, et al.WikiReading:a novel large-scale language understanding task over Wikipedia[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics.Stroudsburg, USA:Association for Computational Linguistics, 2016:1535-1545. [17] TANG Z, SHEN Y, MA X, et al.Multi-hop reading comprehension across documents with path-based graph convolutional network[EB/OL].[2020-10-11].https://arxiv.org/abs/2006.06478. [18] JIANG Y C, JOSHI N, CHEN Y C, et al.Explore, propose, and assemble:an interpretable model for multi-hop reading comprehension[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.Stroudsburg, USA:Association for Computational Linguistics, 2019:2714-2725. [19] ZHONG V, XIONG C M, KESKAR N S, et al.Coarse-grain fine-grain coattention network for multi-evidence question answering[EB/OL].[2020-10-11].https://arxiv.org/abs/1901.00603v2. [20] ZHUANG Y M, WANG H D.Token-level dynamic self-attention network for multi-passage reading comprehension[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.Stroudsburg, USA:Association for Computational Linguistics, 2019:2252-2262. |