[1] SPIRTES P, ZHANG K.Causal discovery and inference:concepts and recent methodological advances[J].Applied Informatics, 2016, 3(1):1-28. [2] PEARL J, MACKENZIE D.The book of why:the new science of cause and effect[J].Journal of MultiDisciplinary Evaluation, 2018, 14(31):47-54. [3] CAI R C, ZHANG Z J, HAO Z F, et al.Understanding social causalities behind human action sequences[J].IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(8):1801-1813. [4] RUNGE J, BATHIANY S, BOLLT E, et al.Inferring causation from time series in earth system sciences[J].Nature Communications, 2019, 10(1):1-13. [5] CAI R C, ZHANG Z J, HAO Z F.Causal gene identification using combinatorial V-structure search[J].Neural Networks, 2013, 43(1):63-71. [6] 赵森栋, 刘挺.因果关系及其在社会媒体上的应用研究综述[J].软件学报, 2014, 25(12):2733-2752. ZHAO S D, LIU T.Causality and its applications in social media:a survey[J].Journal of Software, 2014, 25(12):2733-2752.(in Chinese) [7] 蔡瑞初, 陈薇, 张坤, 等.基于非时序观察数据的因果关系发现综述[J].计算机学报, 2017, 40(6):1470-1490. CAI R C, CHEN W, ZHANG K, et al.A survey on non-temporal series observational data based causal discovery[J].Chinese Journal of Computers, 2017, 40(6):1470-1490.(in Chinese) [8] SPIRTES P, GLYMOUR C.An algorithm for fast recovery of sparse causal graphs[J].Social Science Computer Review, 1991, 9(1):62-72. [9] CHICKERING D M.Optimal structure identification with greedy search[J].Journal of Machine Learning Research, 2002, 3(11):507-554. [10] SHIMIZU S, HOYER P O, HYVRINEN A, et al.A linear non-Gaussian acyclic model for causal discovery[J].Journal of Machine Learning Research, 2006, 7(4):2003-2030. [11] SHIMIZU S, INAZUMI T, SOGAWA Y, et al.DirectLiNGAM:a direct method for learning a linear non-Gaussian structural equation model[J].Journal of Machine Learning Research, 2011, 12(2):1225-1248. [12] HOYER P O, HYVÄRINEN A, SCHEINES R, et al.Causal discovery of linear acyclic models with arbitrary distributions[C]//Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence.[S.l.]:AUAI Press, 2008:1-10. [13] ZHANG K, HYVÄRINEN A.On the identifiability of the post-nonlinear causal model[C]//Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence.[S.l.]:AUAI Press, 2009:1-10. [14] SILVA R, SCHEINES R, GLYMOUR C, et al.Learning the structure of linear latent variable models[J].Journal of Machine Learning Research, 2006, 7(7):191-246. [15] CAI R C, XIE F, GLYMOUR C, et al.Triad constraints for learning causal structure of latent variables[C]//Proceedings of NeurIPS 2019.Washington D.C., USA:IEEE Press, 2019:12863-12872. [16] SPIRTES P L, MEEK C, RICHARDSON T S.Causal inference in the presence of latent variables and selection Bias[EB/OL].[2021-05-10].https://arxiv.org/abs/1302.4983. [17] COLOMBO D, MAATHUIS M H, KALISCH M, et al.Learning high-dimensional directed acyclic graphs with latent and selection variables[J].The Annals of Statistics, 2012, 40(1):294-321. [18] TASHIRO T, SHIMIZU S, HYVÄRINEN A, et al.ParceLiNGAM:a causal ordering method robust against latent confounders[J].Neural Computation, 2014, 26(1):57-83. [19] MAEDA T N, SHIMIZU S.RCD:repetitive causal discovery of linear non-Gaussian acyclic models with latent confounders[EB/OL].[2021-05-10].https://arxiv.org/abs/2001.04197v1. [20] HOYER P O, SHIMIZU S, KERMINEN A J, et al.Estimation of causal effects using linear non-Gaussian causal models with hidden variables[J].International Journal of Approximate Reasoning, 2008, 49(2):362-378. [21] KUMMERFELD E, RAMSEY J.Causal clustering for 1-factor measurement models[C]//Proceedings of International Conference on Knowledge Discovery & Data Mining.New York, USA:ACM Press, 2016:1655-1664. [22] XIE F, CAI R C, HUANG B W, et al.Generalized independent noise condition for estimating latent variable causal graphs[EB/OL].[2021-05-10].https://arxiv.org/abs/2010.04917. [23] SPIRTES P, GLYMOUR C N, GLYMOUR C.Causation, prediction, and search[M].Cambridge, USA:MIT Press, 2001. [24] ORD J K, KAGAN A M, LINNIK Y V, et al.Characterization problems in mathematical statistics[J].Journal of the Royal Statistical Society Series A(General), 1975, 138(4):576. [25] ZENG Y, SHIMIZU S, CAI R C, et al.Causal discovery with multi-domain LiNGAM for latent factors[C]//Proceedings of International Joint Conference on Artificial Intelligence.Washington D.C., USA:IEEE Press, 2021:1-10. [26] JANZING D, HOYER P O, SCHOELKOPF B.Telling cause from effect based on high-dimensional observations[EB/OL].[2021-05-10].https://arxiv.org/abs/0909.4386. [27] MELS G.LISREL for Windows:getting started guide[M].[S.l.]:Scientific Software International, Inc., 2006. [28] COX J L, HOLDEN J M, SAGOVSKY R.Detection of postnatal depression:development of the 10-item edinburgh postnatal depression scale[J].British Journal of Psychiatry the Journal of Mental Science, 1987, 150(6):782-786. |