计算机工程 ›› 2007, Vol. 33 ›› Issue (21): 219-221,.doi: 10.3969/j.issn.1000-3428.2007.21.078

• 多媒体技术及应用 • 上一篇    下一篇

基于信息熵的蒙特卡罗全局光照的自适应抽样

邢连萍,徐 庆   

  1. (天津大学计算机科学与技术学院,天津 300072)
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2007-11-05 发布日期:2007-11-05

Adaptive Sampling for Monte Carlo Global Illumination Based on Entropy

XING Lian-ping, XU Qing   

  1. (School of Computer Science and Technology, Tianjin University, Tianjin 300072)
  • Received:1900-01-01 Revised:1900-01-01 Online:2007-11-05 Published:2007-11-05

摘要: 在真实感图形生成领域里,蒙特卡罗方法是计算整体光照问题的极佳选择。但是,在用基于蒙特卡罗的全局光照算法生成的图像中,当没有足够多的采样量的时候,存在大量的噪声。自适应抽样方法是减少这种噪声的一种很好的方法。该文提出了一种新的基于信息熵的自适应抽样算法。实验结果表明,该方法的效果优于香农信息熵等经典方法。

关键词: 整体光照, 蒙特卡罗, 自适应抽样, 信息熵

Abstract: Monte Carlo is a good choice to compute the problem of global illumination in the field of realistic image synthesis. However, the image produced by a Monte Carlo-based global illumination algorithm is noisy when not using a large enough number of samples. Adaptive sampling is an attractive means to reduce these noises. This paper introduces a new measure based on entropy for adaptive sampling. Experimental results show that the method can perform better than classic ones.

Key words: global illumination, Monte Carlo, adaptive sampling, entropy

中图分类号: