[1] KREUTZ D, RAMOS F M V, VERISSIMO P E, et al.Software-defined networking:a comprehensive survey[J].Proceedings of the IEEE, 2014, 103(1):14-76. [2] ZENG Y, GUO S T, LIU G Y.Comprehensive link sharing avoidance and switch aggregation for software-defined data center networks[J].Future Generation Computer Systems, 2019, 91:25-36 [3] 曹永轶, 金伟正, 吴静, 等.一种面向SDN的跨平面协作DDoS检测与防御方法[J].计算机工程, 2020, 46(11):148-156. CAO Y Y, JIN W Z, WU J, et al.A DDoS detection and defense method based on cross plane cooperation for SDN[J].Computer Engineering, 2020, 46(11):148-156.(in Chinese) [4] 张朝昆, 崔勇, 唐翯祎, 等.软件定义网络(SDN)研究进展[J].软件学报, 2015, 26(1):62-81. ZHANG C K, CUI Y, TANG H Y, et al.State-of-the-art survey on Software-Defined Networking(SDN)[J].Journal of Software, 2015, 26(1):62-81.(in Chinese) [5] 徐玉华, 孙知信.软件定义网络中的异常流量检测研究进展[J].软件学报, 2020, 31(1):183-207. XU Y H, SUN Z X.Research development of abnormal traffic detection in software defined networking[J].Journal of Software, 2020, 31(1):183-207.(in Chinese) [6] 何亨, 胡艳, 郑良汉, 等.云环境中基于SDN的高效DDoS攻击检测与防御方案[J].通信学报, 2018, 39(4):139-151. HENG H, HU Y, ZHENG L H, et al.Efficient DDoS attack detection and prevention scheme based on SDN in cloud environment[J].Journal on Communications, 2018, 39(4):139-151.(in Chinese) [7] MOUSAVI S M, ST-HILAIRE M.Early detection of DDoS attacks against SDN controllers[C]//Proceedings of International Conference on Computing, Networking and Communications(ICNC).Washington D.C., USA:IEEE Press, 2015:77-81. [8] JANKOWSKI D, AMANOWICZ M.On efficiency of selected machine learning algorithms for intrusion detection in software defined networks[J].International Journal of Electronics and Telecommunications, 2016, 62(3):247-252. [9] WANG P, CHAO K M, LIN H C, et al.An efficient flow control approach for SDN-based network threat detection and migration using support vector machine[C]//Proceedings of the 13th International Conference on E-Business Engineering(ICEBE).Washington D.C., USA:IEEE Press, 2016:56-63. [10] LATAH M, TOKER L.Towards an efficient anomaly-based intrusion detection for software-defined networks[J].IET Networks, 2018, 7(6):453-459. [11] CUI J, ZHANG J, HE J T, et al.DDoS detection and defense mechanism for SDN controllers with K-Means[C]//Proceedings of the 13th International Conference on Utility and Cloud Computing(UCC).Washington D.C., USA:IEEE Press, 2020:394-401. [12] 林昕, 吕峰, 姜亚光, 等.网络异常流量智能感知模型构建[J].工业技术创新, 2021, 8(3):7-14. LIN X, LÜ F, JIANG Y G, et al.Establishment of intelligent perception model of abnormal network traffic[J].Industrial Technology Innovation, 2021, 8(3):7-14.(in Chinese) [13] 陈解元.基于LSTM的卷积神经网络异常流量检测方法[J].信息技术与网络安全, 2021, 40(7):42-46. CHEN X Y.Network intrusion detection based on convolutional neural networks with LSTM[J].Information Technology and Network Security, 2021, 40(7):42-46.(in Chinese) [14] 陈怡欣.SDN环境下的流量异常检测技术研究[D].合肥:中国科学技术大学, 2021. CHEN Y X.Abnormal traffic detection technology in software-defined network[D].Hefei:University of Science and Technology of China, 2021.(in Chinese) [15] 王丽宝.基于协同学习的网络异常检测研究[D].北京:北京化工大学, 2020. WANG L B.Research on network anomaly detection based on collaborative learning[D] Beijing:Beijing University of Chemical Technology, 2020.(in Chinese) [16] MCMAHAN H B, MOORE E, RAMAGE D, et al.Communication-efficient learning of deep networks from decentralized data[EB/OL].[2022-02-11].https://arxiv.org/abs/1602.05629. [17] 杨强.AI与数据隐私保护:联邦学习的破解之道[J].信息安全研究, 2019, 5(11):961-965. YANG Q.AI and data privacy protection:the way to federated learning[J].Journal of Information Security Research, 2019, 5(11):961-965.(in Chinese) [18] YANG Q, LIU Y, CHEN T J, et al.Federated machine learning[J].ACM Transactions on Intelligent Systems and Technology, 2019, 10(2):1-19. [19] 周传鑫, 孙奕, 汪德刚, 等.联邦学习研究综述[J].网络与信息安全学报, 2021, 7(5):77-92. ZHOU C X, SUN Y, WANG D G, et al.Survey of federated learning research[J].Chinese Journal of Network and Information Security, 2021, 7(5):77-92.(in Chinese) [20] SHARMA S, XING C P, LIU Y, et al.Secure and efficient federated transfer learning[C]//Proceedings of IEEE International Conference on Big Data.Washington D.C., USA:IEEE Press, 2019:2569-2576. [21] 刘奕, 李建华, 张一瑫, 等.基于特征属性信息熵的网络异常流量检测方法[J].信息网络安全, 2021, 21(2):78-86. LIU Y, LI J H, ZHANG Y T, et al.Network abnormal flow detection method based on feature attribute information entropy[J].Netinfo Security, 2021, 21(2):78-86.(in Chinese) [22] LAKHINA A, CROVELLA M, DIOT C.Mining anomalies using traffic feature distributions[J].ACM SIGCOMM Computer Communication Review, 2005, 35(4):217-228. [23] 李蕊, 张路桥, 李海峰, 等.基于熵的网络异常流量检测研究综述[J].计算机系统应用, 2017, 26(6):36-39. LI R, ZHANG L Q, LI H F, et al.Survey of entropy-based network traffic anomaly detection methods[J].Computer Systems & Applications, 2017, 26(6):36-39.(in Chinese) [24] 关卿, 王宏, 李全良.信息熵在网络流量矩阵估算中的应用[J].计算机工程, 2010, 36(14):77-78, 81. GUAN Q, WANG H, LI Q L.Application of information entropy in network traffic matrix estimation[J].Computer Engineering, 2010, 36(14):77-78, 81.(in Chinese) [25] LI T, SAHU A K, TALWALKAR A, et al.Federated learning:challenges, methods, and future directions[J].IEEE Signal Processing Magazine, 2020, 37(3):50-60. [26] DUCHI J, HAZAN E, SINGER Y.Adaptive subgradient methods for online learning and stochastic optimization[J].Journal of machine learning research, 2011, 12(61):2121-2159. [27] VOGELS T, KARIMIREDDY S P, JAGGI M.PowerSGD:practical low-rank gradient compression for distributed optimization[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems.New York, USA:ACM Press, 2019:14269-14278. [28] WANG H, SIEVERT S, CHARLES Z, et al.ATOMO:communication-efficient learning via atomic sparsification[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems, New York, USA:Curran Associates Inc., 2018:9872-9883. [29] KONEČNÝ J, MCMAHAN H B, YU F X, et al.Federated learning:strategies for improving communication efficiency[EB/OL].[2022-02-11].https://arxiv.org/abs/1610.05492. [30] MOUSTAFA N, SLAY J.UNSW-NB15:a comprehensive data set for network intrusion detection systems(UNSW-NB15 network data set)[C]//Proceedings of Military Communications and Information Systems Conference(MilCIS).Washington D.C., USA:IEEE Press, 2015:1-6. |