1 |
王波. 机场飞行区智能周界安防系统设计探讨. 科学技术创新, 2019, 78 (29): 104- 105.
URL
|
|
WANG B. Discussion on the design of intelligent perimeter security system in airport flight area. Scientific and Technological InnovationInformation, 2019, 78 (29): 104- 105.
URL
|
2 |
段其昌, 赵钦波, 杨源飞. 一种基于特征匹配的目标入侵检测方法. 计算机应用, 2012, 32 (S1): 126-127, 133.
URL
|
|
DUAN Q C, ZHAO Q B, YANG Y F. Trespass detection method based on feature matching. Journal of Computer Applications, 2012, 32 (S1): 126-127, 133.
URL
|
3 |
ANSARI S A, ZAFAR A. A fusion of dolphin swarm optimization and improved sine cosine algorithm for automatic detection and classification of objects from surveillance videos. Measurement, 2022, 192, 110921.
doi: 10.1016/j.measurement.2022.110921
|
4 |
杜文汉, 李东兴, 王倩楠, 等. 融合改进帧差和边缘提取算法的运动目标检测. 科学技术与工程, 2022, 22 (5): 1944- 1949.
doi: 10.3969/j.issn.1671-1815.2022.05.027
|
|
DU W H, LI D X, WANG Q N, et al. Moving target detection based on improved frame difference and edge extraction algorithm. Science Technology and Engineering, 2022, 22 (5): 1944- 1949.
doi: 10.3969/j.issn.1671-1815.2022.05.027
|
5 |
STAUFFER C, GRIMSON W E L. Adaptive background mixture models for real-time tracking[C]//Proceedings of 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2002: 246-252.
|
6 |
VAN DROOGENBROECK M, PAQUOT O. Background subtraction: experiments and improvements for ViBe[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Washington D. C., USA: IEEE Press, 2012: 32-37.
|
7 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: ACM Press, 2014: 580-587.
|
8 |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
9 |
HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 2980-2988.
|
10 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 779-788.
|
11 |
|
12 |
YIN Y, LI H, FU W. Faster-YOLO: an accurate and faster object detection method. Digital Signal Processing, 2020, 102, 102756.
doi: 10.1016/j.dsp.2020.102756
|
13 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 21-37.
|
14 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 2999-3007.
|
15 |
|
16 |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[EB/OL]. [2022-11-08]. https://arxiv.org/abs/2207.02696.
|
17 |
徐增敏, 陈凯, 郭威伟, 等. 面向轻量级卷积网络的激活函数与压缩模型. 计算机工程, 2022, 48 (5): 242- 250.
URL
|
|
XU Z M, CHEN K, GUO W W, et al. Activation function and compression model for lightweight convolutional network. Computer Engineering, 2022, 48 (5): 242- 250.
URL
|
18 |
STAUFFER C, GRIMSON W E L. Learning patterns of activity using real-time tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22 (8): 747- 757.
doi: 10.1109/34.868677
|
19 |
XIE S N, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 5987-5995.
|
20 |
|
21 |
WU Z X, NAGARAJAN T, KUMAR A, et al. BlockDrop: dynamic inference paths in residual networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 8817-8826.
|
22 |
HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. [2022-11-08]. https://arxiv.org/abs/1704.04861.
|
23 |
陈涛, 陈天宇, 万永菁, 等. 一种改进的适用于监控视频的轻量级入侵检测算法及其应用. 华东理工大学学报(自然科学版), 2021, 47 (6): 734- 741.
URL
|
|
CHEN T, CHEN T Y, WAN Y J, et al. An improved lightweight intrusion detection algorithm for surveillance video and its application. Journal of East China University of Science and Technology (Natural Science Edition), 2021, 47 (6): 734- 741.
URL
|
24 |
HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 1577-1586.
|
25 |
DING X H, GUO Y C, DING G G, et al. ACNet: strengthening the kernel skeletons for powerful CNN via asymmetric convolution blocks[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2020: 1911-1920.
|
26 |
YANG B, BENDER G, LE Q V, et al. CondConv: conditionally parameterized convolutions for efficient inference[EB/OL]. [2022-11-08]. https://arxiv.org/abs/1904.04971.
|
27 |
LI D, HU J, WANG C H, et al. Involution: inverting the inherence of convolution for visual recognition[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 12316-12325.
|