计算机工程 ›› 2013, Vol. 39 ›› Issue (4): 137-139.doi: 10.3969/j.issn.1000-3428.2013.04.032

• 安全技术 • 上一篇    下一篇

No序列的多项相关性研究

王 慧,魏仕民,刘楠楠   

  1. (淮北师范大学数学科学学院,安徽 淮北 235000)
  • 收稿日期:2012-07-23 出版日期:2013-04-15 发布日期:2013-04-12
  • 作者简介:王 慧(1979-),女,讲师、硕士,主研方向:密码学,信息安全;魏仕民,教授、博士;刘楠楠,讲师、硕士
  • 基金项目:
    安徽省自然科学基金资助项目(1208085QF119);安徽省高校省级自然科学研究基金资助项目(KJ2013Z286);安徽省淮北师范大学青年科研基金资助项目(2012xq45)

Research on Multinomial Relativity of No Sequences

WANG Hui, WEI Shi-min, LIU Nan-nan   

  1. (School of Mathematical Sciences, Huaibei Normal University, Huaibei 235000, China)
  • Received:2012-07-23 Online:2013-04-15 Published:2013-04-12

摘要: 利用有限域F2n到F2m上的迹函数 及其性质,研究二元No序列的多项相关性,分析结果表明,周期为P=2n–1的二元No序列多项相关函数?(k1, k2, …, ks-1)的表达式为P–1(2mt–T),值域为{ P–1(2mt–T)︱t = 0,1,…,(T–1)r∕(2m–1)}∪{1},据此得出二元No序列的非平凡多项相关函数的值域都是多值的,且大于3,因此二元No序列的多址干扰强度大于Kasami序列。

关键词: 有限域, 迹函数, No序列, 自相关函数, 多项相关性, 移加特性

Abstract: This paper investigates the multinomial relativity of binary No sequences by using the conception and properties of trace functions from the field F2n to the subfield F2m. The multinomial relativity function of No sequences of period 2n–1 is P–1(2mt–T) , and its value field is {P–1(2mt–T)︱t = 0,1,…,(T–1)r∕(2m–1)}∪{1}. In this correspondence, it shows that the multinomial relativity function of No sequences has more than three values, so the multiple access interference of No sequences is more intensive than Kasami sequences.

Key words: finite field, trace function, No sequences, auto-correlation function, multinomial relativity, shift additive property

中图分类号: