计算机工程

所属专题: 物联网专题

• 物联网专题 • 上一篇    下一篇

周界入侵检测中基于WSN的目标定位算法

汪 麒,庄 毅,顾晶晶   

  1. (南京航空航天大学计算机科学与技术学院,南京 210016)
  • 收稿日期:2012-09-21 出版日期:2013-09-15 发布日期:2013-09-13
  • 作者简介:汪 麒(1987-),男,硕士研究生,主研方向:无线传感器网络,信息安全;庄 毅,教授、博士生导师;顾晶晶,讲师
  • 基金项目:
    航空科学基金资助项目(2010ZC13012);江苏省普通高校研究生科研创新计划基金资助项目(CXLX11_0203)

Target Positioning Algorithm Based on WSN in Perimeter Intrusion Detection

WANG Qi, ZHUANG Yi, GU Jing-jing   

  1. (College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)
  • Received:2012-09-21 Online:2013-09-15 Published:2013-09-13

摘要: 在周界入侵检测中,DV-Distance定位算法得到的距离值误差较大。为此,对该算法进行改进,提出一种适用于带状无线传感器网络(WSN)的节点定位算法(IDV-Distance)。利用RSSI方法测得累计跳距,根据带状WSN的拓扑特性对其进行修正。采用极大似然法初步估算节点位置,并通过最速下降算法提高节点定位精度。实验结果表明,与经典DV-Distance算法及其2种改进算法相比,IDV-Distance算法的定位精度较高。

关键词: 无线传感器网络, 区域入侵检测, IDV-distance自定位算法, 累计跳距修正, 极大似然法, 最速下降算法

Abstract: The deviation of the DV-Distance positioning algorithm in perimeter intrusion detection is too large. Aiming at this problem, this paper improves DV-Distance(IDV-Distance) algorithm and proposes a node positioning algorithm which is suitable for ribbon Wireless Sensor Network(WSN). This algorithm gets the cumulative hop distance measured by RSSI method, and corrects it based on the ribbon WSN topology characteristics. It preliminary estimates node position using the maximum likelihood method, and improves the node positioning accuracy by steepest descent algorithm. Experimental results show that, compared with the classical DV-Distance algorithm and two kinds of improved DV-Distance algorithms in ribbon WSN, this algorithm has higher accuracy.

Key words: Wireless Sensor Network(WSN), regional intrusion detection, IDV-distance self-positioning algorithm, accumulated hop distance correction, maximum likelihood method, steepest descent algorithm

中图分类号: