[1] KAZHDAN M, HOPPE H. Screened poisson surface
reconstruction[J]. ACM Transactions on Graphics, 2013,
32(3): 1-13.
[2] XU Q, TAO W. Multi-scale geometric consistency guided
multi-view stereo[C]//Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
2019: 5483-5492.
[3] CAO C, REN X, FU Y. Mvsformer: Learning robust
image representations via transformers and
temperature-based depth for multi-view stereo[J].
arXiv:2208.02541, 2022.
[4] GOESELE M, CURLESS B, SEITZ S M. Multiview
stereo revisited[C]//Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2006:
2402-2409.
[5] FURUKAWA Y, HERN C. Multi-view stereo: A
tutorial.[J]. Computer Graphics and Vision, 2015,
9(1-2):1–148.
[6] MILDENHALL B, SRINIVASAN P P, TANCIK M,
BARRON J T, RAMAMOORTHI R, NG R. Nerf:
Representing scenes as neural radiance fields for view
synthesis[C]//European Conference on Computer Vision.
Springer, 2020: 405-421.
[7] PARK J J, FLORENCE P, STRAUB J, NEWCOMBE R,
LOVEGROVE S. Deepsdf: Learning continuous signed
distance functions for shape
representation[C]//Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
2019: 165-174.
[8] WANG P, LIU L, LIU Y, THEOBALT C, KOMURA T,
WANG W. Neus: Learning neural implicit surfaces by
volume rendering for multi-view reconstruction[J].
arXiv:2106.10689, 2021.
[9] CHEN D, ZHANG P, FELDMANN I, et al. Recovering
fine details for neural implicit surface
reconstruction[C]//Proceedings of the IEEE/CVF WinterConference on Applications of Computer Vision, 2023:
4330-4339.
[10] ZHANG J, YAO Y, QUAN L. Learning signed distance
field for multi-view surface
reconstruction[C]//Proceedings of the IEEE/CVF
International Conference on Computer Vision,
2021:6505-6514.
[11] FU Q, XU Q, ONG Y S, et al. Geo-neus:
Geometry-consistent neural implicit surfaces learning for
multi-view reconstruction[C]//Advances in Neural
Information Processing Systems, 2022, 35: 3403-3416.
[12] 蒲建鑫, 宋方伟, 冷齐齐. 基于 SFM 算法的三维重建
关键技术研究[J]. 电子技术, 2021, 50(6): 36-37.
PU J X,SONG F W,LENG Q Q.Study on key
technologies of 3D reconstruction based on SFM
algorithm[J]. Electronic Technology, 2021, 50(6): 36-37.
[13] HUANG H, WU Y, ZHOU J, et al. Neusurf: On-surface
priors for neural surface reconstruction from sparse input
views[C]//Proceedings of the AAAI Conference on
Artificial Intelligence. 2024, 38(3): 2312-2320.
[14] WANG W, GAO F, SHEN Y. Res-NeuS: Deep Residuals
and Neural Implicit Surface Learning for Multi-View
Reconstruction[J]. Sensors, 2024, 24(3): 881.
[15] SEITZ S M, CURLESS B, DIEBEL J, SCHARSTEIN D,
SZELISKI R. A comparison and evaluation of multi-view
stereo reconstruction algorithms[C]//Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2006: 519-528.
[16] JIANG Y, SONG L. 3D Surface Reconstruction Based on
Dynamic Graph Convolutional Occupancy Network[J].
International Journal of Pattern Recognition and Artificial
Intelligence, 2023, 37(14): 2354022.
[17] JI M, GALL J, ZHENG H, LIU Y, FANG L: Surfacenet:
An end-to-end 3d neural network for multiview
stereopsis[C]//Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2017: 2326-2334.
[18] CAMPBELL N D, VOGIATZIS G, HERN C, CIPOLLA R:
Using multiple hypotheses to improve depth-maps for
multi-view stereo[C]//Proceedings of the European
Conference on Computer Vision. Springer, 2008:
766-779.
[19] TOLA E, STRECHA C, FUS P: Efficient large-scale
multi-view stereo for ultra high resolution image
sets[C]//Machine Vision and Applications, 2012: 903-920.
[20] YAO Y, LUO Z, LI S, FANG T, QUAN L. Mvsnet: Depth
inference for unstructured multi-view stereo[C]//European
Conference on Computer Vision. 2018: 767-783.
[21] WANG F, GALLIANI S, VOGEL C, SPECIALE P,
POLLEFEYS M. Patchmatchnet: Learned multi-view
patchmatch stereo[C]//Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
2021: 4194-4203.
[22] XU Q, XU Z, PHILIP J, et al. Point-nerf: Point-based
neural radiance fields[C]//Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
2022: 5438-5448.
[23] 陈坤, 刘新国. 基于光线的全局优化多视图三维重建方
法[J]. 计算机工程, 2013, 39(11): 235-239.
CHEN K, LIU X G. Globaloptimized multi-view 3D
reconstruction method based on rays [J]. Computer
Engineering, 2013, 39(11): 235-239.
[24] BIAN W, WANG Z, LI K, et al. Nope-nerf: Optimising
neural radiance field with no pose prior[C]//Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023:4160-4169.
[25] YE Y F, et al. Nef: Neural edge fields for 3d parametric
curve reconstruction from multi-view
images[C]//Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2023 :
8486-8495.
[26] WANG X H, et al. MP-NeRF: More refined deblurred
neural radiance field for 3D reconstruction of blurred
images[J]. Knowledge-Based Systems 290(2024):
111571.
[27] 肖祎龙, 邓伊琴, 陈志刚. 面向动态三维人体重建的神
经 辐 射 场 加 速 方 法 [J/OL]. 计 算 机 工 程 ,
1-13[2025-01-15].
https://doi.org/10.19678/j.issn.1000-3428.0069317.
XIAO Y L, DENG Y Q, CHEN Z G. A neural radiance
field acceleration method for dynamic three-dimensional
human reconstruction[J/OL]. Computer Engineering,
1-13[2025-01-15].
https://doi.org/10.19678/j.issn.1000-3428.0069317.
[28] ZHOU J, WEN X, MA B, LIU Y, GAO Y, FANG Y, HANZ. 3D-OAE: Occlusion Auto-Encoders for
Self-Supervised Learning on Point Clouds[J].
arXiv:2203.14084, 2022b.
[29] PENG S, NIEMEYER M, MESCHEDER L, et al.
Convolutional occupancy network[C]//Proceedings of the
European Conference on Computer Vision. Springer, 2020:
523-540.
[30] 费煜哲, 蔡欣, 赵鸣博, 等. 基于隐式表达的服装三维
重建[J]. 计算机工程, 2024, 50(05): 220-228.
FEI Y Z, CAI X, ZHAO M B, et al. 3D reconstruction of
clothing based on implicit expression [J]. Computer
Engineering, 2024, 50(05): 220-228.
[31] 景维鹏, 王源锋, 李超. 基于锥形追踪和网络分解的
NeRF 三 维 重 建 方 法 [J/OL]. 计 算 机 工 程 ,
1-10[2024-01-27].
https://doi.org/10.19678/j.issn.1000-3428.0068291.
JING W P, WANG Y F, LI C. NeRF 3D Reconstruction
Method Based on Bone Tracking and Network
Decomposition[J]. Computer Engineering,
1-10[2024-01-27].
https://doi.org/10.19678/j.issn.1000-3428.0068291.
[32] LORENSEN W E, CLINE H E. Marching cubes: A high
resolution 3d surface construction algorithm[J]. ACM
Transactions on Graphics, 1987, 21(4):163-169.
[33] OECHSLE M, PENG S, GEIGER A. UNISURF: Unifying
Neural Implicit Surfaces and Radiance Fields for
Multi-View Reconstruction[C]//Proceedings of the
IEEE/CVF International Conference on Computer Vision,
2021: 5589-5599.
[34] YARIV L, KASTEN Y, MORAN D, GALUN M,
ATZMON M, RONEN B, LIPMAN Y. Multiview neural
surface reconstruction by disentangling geometry and
appearance[J]. Advances in Neural Information
Processing Systems, 2020.
[35] YARIV L, GU J, KASTEN Y, LIPMAN Y. Volume
rendering of neural implicit surfaces[J]. Advances in
Neural Information Processing Systems, 2021, 34:
4805-4815.
[36] DARMON F, BASCLE B, DEVAUX J, MONASSE P,
AUBRY M. Improving neural implicit surfaces geometry
with patch warping[C]//Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
2022: 6260-6269.
[37] YU Z, PENG S, NIEMEYER M, SATTLER T, GEIGER
A. Monosdf: Exploring monocular geometric cues for
neural implicit surface reconstruction[J]. Advances in
neural information processing systems, 2022, 35:
25018-25032.
[38] JENSEN R, DAHL A, VOGIATZIS G, et al. Large scale
multi-view stereopsis evaluation[C]//Proceedings of the
IEEE conference on computer vision and pattern
recognition, 2014: 406-413.
[39] YAO Y, LUO Z, LI S, et al. Blendedmvs: A large-scale
dataset for generalized multiview stereo
networks[C]//Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2020:
1790-1799.
|