] Sadr H ,Salari A ,Ashoobi T M , et al. Cardiovascular
disease diagnosis: a holistic approach using the
integration of machine learning and deep learning
models[J].European Journal of Medical
Research,2024,29(1):455-469.
[2] Kovalchuk O ,Barmak O ,Radiuk P , et al. Towards
Transparent AI in Medicine: ECG-Based Arrhythmia
Detection with Explainable Deep Learning[J].
Technologies,2025,13(1):1-33.
[3] Abid A ,Cheikhrouhou O .A data-augmented vision
transformer model for robust multi-label ECG arrhythmia
classification[J].International Journal of Information
Technology,2025,(prepublish):1-7.
[4] Ketu S ,Mishra K P .An intelligent hybrid classification
model for heart disease detection using imbalanced
electrocardiogram signals[J].The Journal ofSupercomputing,2024,80(3):4286-4308.
[5]
[6]
[7]
[8]
[9]
孙波,杨磊,郭秀梅,等.基于CNN和SVM混合模型的心
电信号识别方法[J].山东农业大学学报(自然科学
版),2020,51(02):283-288.
Sun B, Yang L, Guo X M, et al. Ecg signal recognition
method based on CNN and SVM hybrid model [J].
Journal of Shandong Agricultural University (Natural
Science Edition), 2019,51(02):283-288.
张丹,隋文涛,梁钊,等.基于VMD和KNN的心电信号分
类算法[J].电子测量与仪器学报,2019,33(04):140-145.
Zhang D, Sui W T, Liang Z, et al. Ecg signal
classification Algorithm based on VMD and KNN
[J].Chinese Journal of Electronic Measurement and
Instrument, 2019,33(04):140-145.
Gupta I ,Bajaj A ,Sharma V .Comparative analysis of
machine learning algorithms for heart disease
prediction[J].International Journal of Hybrid Intelligent
Systems, 2025, 21(1):14-28.
Falahi A S Z ,Schlegel T T ,Lamela P I , et al. Advanced
electrocardiography heart age: a prognostic, explainable
machine learning approach applicable to sinus and
non-sinus rhythms.[J].European heart journal. Digital
health, 2025,6(1):45-54.
Kiranyaz S , Ince T , Hamila R ,et al. Convolutional
Neural
Networks
for
patient-specific
classification[J].IEEE, 2015,2015:2608–2611.
[10] Alrahhal M M , Bazi Y , Ammour N ,et al. Convolutional
Neural Networks for Electrocardiogram Classification[J].
Journal of Medical and Biological Engineering, 2018,
38(7):1-12.
[11] Jiang R ,Fu B ,Li R , et al. A dual-branch convolutional
neural network with domain-informed attention for
arrhythmia classification of 12-lead electrocardiograms
[J]. Engineering Applications of Artificial Intelligence,
2025, 139 (PA): 1-13.
[12] Liu P , Sun X , Han Y ,et al. Arrhythmia classification of
LSTM autoencoder based on time series anomaly
detection[J].Biomedical Signal Processing and Control,
2022, 71:1-15.
[13] Omarov B ,Baikuvekov M ,Sultan D , et al. Ensemble
Approach Combining Deep Residual Networks and
BiGRU with Attention Mechanism for Classification of
Heart Arrhythmias[J].Computers, Materials & Continua,
2024, 80(1):341-359.
[14] ZHAO Y, REN J, ZHANG B, et al. An explainable
attention-based TCN heartbeats classification model for
arrhythmia detection[J]. Biomedical Signal Processing
and Control, 2023, 80: 1-9.
[15] Chen A , Wang F , Liu W ,et al. Multi-information Fusion
Neural Networks for Arrhythmia Automatic Detection[J].
Computer Methods and Programs in Biomedicine, 2020,
193:1-11.
[16] Chopannejad S , Roshanpoor A , Sadoughi
F .Attention-assisted hybrid CNN-BILSTM-BiGRU
model with SMOTE–Tomek method to detect cardiac
arrhythmia
based
on 12-lead electrocardiogram
signals:[J].DIGITAL HEALTH, 2024, 10:2361-2371.
[17] Xu C . CNN-GRU model for ECG signal classification
using UCR time series data [J]. Advances in Engineering
Innovation, 2024, 12 (1): 31-35.
[18] Cai J , Sun W , Guan J ,et al. Multi-ECGNet for ECG
Arrythmia Multi-Label Classification[J].IEEE Access,
2020, 8:1-11.
[19] Jin, Y , Liu J , Liu Y , et al.A Novel Interpretable Method
Based on Dual-Level Attentional Deep Neural Network
for
Actual Multilabel Arrhythmia Detection[J]IEEE
Transactions on Instrumentation and Measurement,
2022,71: 1-11.
[20] Verma G ,Sahu P T .Deep label relevance and label
ambiguity based multi-label feature selection for text
classification[J].Engineering Applications of Artificial
Intelligence,2025,148:110403-110403.
[21] Wu Y ,Guo G ,Gao H .ELM: a novel ensemble learning
method for multi-target regression and multi-label
classification
problems[J].Applied
2024,54(17-18):7674-7695.
Intelligence,
[22] Moshe B N ,Tsutsui K ,Biton S , et al. RawECGNet: Deep
Learning Generalization for Atrial Fibrillation Detection
From the Raw ECG.[J].IEEE journal of biomedical and
health informatics,2024,28 (9):5180-5188.
[23] Younghoon C ,Myoung J K ,Hee K K , et al. Artificial
intelligence algorithm for detecting myocardial infarction
using six-lead electrocardiography[J].Scientific Reports,
2020,10(1):20495-20495.
ECG
[24] Citarella A A ,Marco D F ,Biasi D L , et al. Analysis of
12-lead ECGs for SARS-CoV-2 detection using deep
learning techniques[J].Multimedia Tools and Applications,
2024, (prepublish):1-14.
[25] Tsung-Yi L ,Priya G ,Ross G , et al.Focal Loss for Dense
Object Detection.[J].IEEE transactions on pattern analysis
and machine intelligence,2020,42(2):318-327.
[26] The China physiological signal challenge 2018.[EB/OL].
(2018-10-17)[2025-04-06].
https://2018.icbeb.org/Challenge.html.
large
[27] Wagner P , Strodthoff N , Bousseljot R D ,et al. PTB-XL,
a
publicly
available
electrocardiography
dataset[J].Scientific Data, 2020, 7(1):1-15.
[28] Russakovsky O , Deng J , Su H ,et al. ImageNet Large
Scale
Visual Recognition Challenge[J].International
Journal of Computer Vision, 2015, 115(3):211-252.
[29] Hochreiter S, Schmidhuber J .Long Short-Term
Memory[J].Neural Computation, 1997, 9(8):1735-1780.
[30] Muhammad S , Zhaoquan G .Deep Residual Learning for
Image Recognition: A Survey[J].Applied Sciences,
2022,12(18):1-43.
[31] Yao Q , Wang R , Fan X ,et al. Multi-class Arrhythmia
detection from 12-lead varied-length ECG using
Attention-based Time-Incremental Convolutional Neural
Network[J]. Information Fusion, 2020, 53:174-182.
[32] Zhang D , Yang S , Yuan X ,et al. Interpretable deep
learning
for
automatic
diagnosis
of
12-lead
electrocardiogram.[J].iScience, 2021, 24(4):1-22.
[33] Ge Z , Jiang X , Tong Z ,et al. Multi-label correlation
guided feature fusion network for abnormal ECG
diagnosis[J].Knowledge-based systems, 2021,233:1-10.
[34] Zhou F ,Chen L . Leadwise clustering multi-branch
network for multi-label ECG classification [J]. Medical
Engineering and Physics, 2024, 130:1-11.
[35] Chen C , Jin B , Che C ,et al.OSGAN: Omni-scale and
Global-aware
ECG
arrhythmia
diagnostic
network[J].Biomedical Signal Processing and Control,
2024, 96(PartA):1-10.
[36] Liu C L , Xiao B , Hsieh C H .Multimodal fusion of
spatial–temporal and frequency representations for
enhanced ECG classification[J].Information Fusion, 2025,
118:1-17.
[37] Quancheng G ,Hui L ,Tianlei G , et al.An ECG
Classification Method Based on Multi-Task Learning and
CoT Attention Mechanism.[J].Healthcare (Basel,
Switzerland), 2023, 11(7):1-13.
[38] Jyotishi D , Dandapat S .An Attentive Spatio-Temporal
Learning-Based Network for Cardiovascular Disease
Diagnosis[J].Systems, Man, and Cybernetics: Systems,
IEEE Transactions on, 2023, 53(8-Part1):4661-4671.
[39] Qingyu Y ,Luming Z ,Wenguang Z , et al.Multi-scale
SE-residual network with transformer encoder for
myocardial infarction classification[J].Applied Soft
Computing, 2023,149(PA):1-12.
[40] Kutluana G , Turker I .Classification of cardiac disorders
using weighted visibility graph features from ECG
signals[J].Biomedical signal processing and control,
2024(Jan. Pt.A):1-14.
[41] Xiao Q ,Wang C .Adaptive wavelet base selection for
deep learning-based ECG diagnosis: A reinforcement
learning approach.[J].PloS one,2025,20(2):1-11. |