作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2020, Vol. 46 ›› Issue (5): 298-304,311. doi: 10.19678/j.issn.1000-3428.0054091

• 开发研究与工程应用 • 上一篇    下一篇

基于一维卷积神经网络的实时心脏按压评估

殷佳豪1, 刘世杰1, 鲍宇1,2, 杨轩1, 朱紫维1   

  1. 1. 中国矿业大学 计算机科学与技术学院, 江苏 徐州 221116;
    2. 矿山数字化教育部工程研究中心, 江苏 徐州 221116
  • 收稿日期:2019-03-04 修回日期:2019-05-06 发布日期:2019-05-20
  • 作者简介:殷佳豪(1997-),男,本科生,主研方向为智能信息处理;刘世杰,本科生;鲍宇,副教授、博士后;杨轩,硕士;朱紫维,本科生。
  • 基金资助:
    国家自然科学基金(51204185);国家重点基础研究发展计划(2013CB227900);教育部新世纪优秀人才支持计划(NCET-13-1022);徐州市应用基础研究项目(KC17073)。

Real-time Cardiac Massage Assessment Based on One-dimensional Convolutional Neural Network

YIN Jiahao1, LIU Shijie1, BAO Yu1,2, YANG Xuan1, ZHU Ziwei1   

  1. 1. School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China;
    2. Mine Digitization Engineering Research Center of Minstry of Education, Xuzhou, Jiangsu 221116, China
  • Received:2019-03-04 Revised:2019-05-06 Published:2019-05-20

摘要: 在评估胸外心脏按压加速度波形时,现有的利用加速度波形积分计算胸外心脏按压距离的方法多数存在积分漂移、误差累积的问题。在波形分割和标签修正的基础上,提出一种基于一维卷积神经网络的胸外心脏按压波形的识别算法。对滤波后的数据进行脉冲识别,使用滑动窗口模型分割识别后的脉冲得到单次按压的加速度波形,根据数据离散程度对标签进行修正,解决标签可信度低的问题,在此基础上运用学习率衰减、Adam算法等构建一维卷积神经网络模型并进行优化。实验结果表明,该算法基于一维卷积神经网络的分类正确率达到99.4%,对比传统的积分算法、BP神经网络算法提升近5%,且不受按压遮挡、电磁波干扰等因素的影响,对于胸外心脏按压评估具有良好的效果。

关键词: 胸外心脏按压, 一维卷积神经网络, 滑动窗口模型, 脉冲识别与波形分割, 弱监督学习策略

Abstract: For the assessment of the acceleration waveform of the external cardiac massage,the existing methods of calculating the depth of cardiac massage using the acceleration waveform integral have the problems of integral drift and error accumulation.On the basis of waveform segmentation and label correction,this paper proposes a recognition algorithm based on one-dimensional convolutional neural network for external cardiac massage waveform.The filtered data is pulse-recognized and the recognized pulse is segmented with the sliding window model to obtain the acceleration waveform of a single massage.Then the data tags are corrected according to the degree of data discretization,which solves the problem of low label credibility.A one-dimensional convolutional neural network model is established and optimized by using learning rate decay and the Adam algorithm.Experimental results show that the one-dimensional convolutional neural network achieves an average accuracy of 99.4%,which is nearly 5% higher than the traditional integral algorithm and BP neural network algorithm.Also,the method is not affected by factors such as massage occlusion and electromagnetic interference,having a good effect on the assessment of external cardiac massage.

Key words: external cardiac massage, one-dimensional convolutional neural network, sliding window model, pulse recognition and waveform segmentation, weak supervised learning strategies

中图分类号: