[1] BOUSSEN S,IBOUANGA-KIPOUTOU H,FOURNIER N,et al.Using an inertial navigation algorithm and accelerometer to monitor chest compression depth during cardiopulmonary resuscitation[J].Medical Engineering and Physics,2016,38(9):1028-1034. [2] QIAN Shaowen,ZHENG Jiewen,ZHANG Guang,et al.The depth measurement of chest compression based on double integration of acceleration[J].Beijing Biomedical Engineering,2011,30(5):496-501.(in Chinese)钱绍文,郑捷文,张广,等.基于加速度二次积分的胸外按压深度测量[J].北京生物医学工程,2011,30(5):496-501. [3] WU Haojie,WU Shuicai,LIU Zhongying.Study on the detection of chest compressions based on acceleration waveform shape analysis[J].China Medical Devices,2018,33(3):6-10.(in Chinese)吴豪杰,吴水才,刘忠英.基于加速度波形形态分析的胸外按压深度检测研究[J].中国医疗设备,2018,33(3):6-10. [4] RUSSELL J K,ZIVE D,DAYA M.Effect of chest compression leaning on accelerometry waveforms[C]//Proceedings of IEEE CinC’16.Vancouver,Canada:IEEE Computer Society,2016:11-14. [5] CHEN Runhang,HUANG Hanming,CHAI Huimin.Study on the discrimination of seismic waveform signals between earthquake and explosion events by convolutional neural network[J].Progress in Geophysics,2018,33(4):1331-1338.(in Chinese)陈润航,黄汉明,柴慧敏.地震和爆破事件源波形信号的卷积神经网络分类研究[J].地球物理学进展,2018,33(4):1331-1338. [6] KONG S,KIM M,HOANG L M,et al.Automatic LPI radar waveform recognition using CNN[J].IEEE Access,2017,6:4207-4219. [7] LIU Jian,ZHANG Hui,LEI Long,et al.Acquisition and analysis of acceleration[J].Information Technology,2013(12):110-112,116.(in Chinese)刘牮,张辉,雷龙,等.加速度数据的采集及分析[J].信息技术,2013(12):110-112,116. [8] YU Zhennan,LIU Qian,GAO Xiuxiao,et al.Improvement and realization of digital-phase-sensitive-detection method based on low-pass filter[J].Well Logging Technology,2018,42(5):568-570,576.(in Chinese)于振南,刘倩,高秀晓,等.基于低通滤波的相敏检波算法改进与实现[J].测井技术,2018,42(5):568-570,576. [9] ZHANG Jianming,LI Pei,LI Xudong,et al.Hybrid denoising algorithm combining median filtering with sparse representation[J].Computer Engineering,2016,42(9):240-245.(in Chinese)张建明,李沛,李旭东,等.结合中值滤波与稀疏表示的混合去噪算法[J].计算机工程,2016,42(9):240-245. [10] DUAN Sirui,CHEN Kan,YU Xiang,et al.Automatic multicarrier waveform classification via PCA and convolutional neural networks[J].IEEE Access,2018,6:51365-51375. [11] YU Jinrui,SI Yujuan,LIU Xin,et al.ECG identification based on PCA-RPROP[C]//Proceedings of International Conference on Digital Human Modeling and Applications in Health,Safety,Ergonomics and Risk Management.Vancouver,Canada:[s.n.],2017:419-432. [12] REN J S,XU L.On vectorization of deep convolutional neural networks for vision tasks[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence.Austin,USA:[s.n.],2015:152-164. [13] KHIRIRAT S,FEYZMAHDAVIAN H R,JOHANSSON M.Mini-batch gradient descent:faster convergence under data sparsity[C]//Proceedings of the 56th IEEE Annual Conference on Decision and Control.Melbourne,Australia:IEEE Press,2017:128-136. [14] WANG Miaoyi,TONG Weiguo,LIU Shibo.Fault detection for power line based on convolution neural network[C]//Proceedings of 2017 International Conference on Deep Learning Technologies.Chengdu,China:[s.n.],2017:156-163. [15] ZHAO Jianmin,WANG Yumeng.The study of learning rate based on BP neural network[J].Microcomputer Applications,2018,34(8):89-92.(in Chinese)赵建民,王雨萌.基于BP神经网络学习率优化的研究[J].微型电脑应用,2018,34(8):89-92. [16] WEI Qingjie,WANG Benbin.Research on image retrieval using deep convolutional neural network combining L1 regularization and PRelu activation function[C]//Proceedings of the 3rd International Conference on Advances in Energy.Chengdu,China:[s.n.],2017:215-222. [17] SHI Guang,ZHANG Jiangshe,LI Huirong,et al.Enhance the performance of deep neural networks via L2 regularization on the input of activations[J].Neural Processing Letters,2019,50:57-75. [18] SRIVASTAVA N,HINTON G,KRIZHEVSKY A,et al.Dropout:a simple way to prevent neural networks from overfitting[J].Journal of Machine Learning Research,2014,15:1929-1958. [19] ZHOU Anzhong,LUO Ke.Sparse Dropout regularization method for convolutional neural networks[J].Journal of Chinese Computer Systems,2018,39(8):1674-1679.(in Chinese)周安众,罗可.一种卷积神经网络的稀疏性Dropout正则化方法[J].小型微型计算机系统,2018,39(8):1674-1679. |