[1] LI Jiaxing,QIN Xingping,LIU Dacai.Traffic sign detection based on Convolutional Neural Network[J].Industrial Control Computer,31(5):102-104.(in Chinese)李家兴,覃兴平,刘达才.基于卷积神经网络的交通标志检测[J].工业控制计算机,2018,31(5):102-104. [2] TAN Zhaolin.Research on traffic sign recognition in natural scenes based on deep learning[D].Guangzhou:South China University of Technology,2018.(in Chinese)谭兆麟.基于深度学习的自然场景中交通标志识别研究[D].广州:华南理工大学,2018. [3] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:779-788. [4] LIU Wei,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//Proceedings of European Conference on Computer Vision.Berlin,Germany:Springer,2016:21-37. [5] REDMON J,FARHADI A.YOLO9000:better,faster,stronger[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:7263-7271. [6] GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2014:580-587. [7] UIJLINGS J R R,SANDE K E A,GEVERS T,et al.Selective search for object recognition[J].International Journal of Computer Vision,2013,104(2):154-171. [8] GIRSHICK R.Fast R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2015:1440-1448. [9] HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916. [10] REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149. [11] HE Kaiming,GKIOXARI G,DOLLÁR P,et al.Mask R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2017:2961-2969. [12] CIREAN D,MEIER U,MASCI J,et al.Multi-column deep neural network for traffic sign classification[J].Neural Networks,2012,32:333-338. [13] XUAN Senyan,GONG Xiaojin,LIU Jilin.Traffic sign recognition based on joint convolutional and recursive neural networks[J].Transducer and Microsystem Technologies,2014,33(8):30-33.(in Chinese)宣森炎,龚小谨,刘济林.基于联合卷积和递归神经网络的交通标志识别[J].传感器与微系统,2014,33(8):30-33. [14] HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al.Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:770-778. [15] WANG Xiaobin,HUANG Jinjie,LIU Wenju.Traffic sign recognition based on optimized convolutional neural network architecture[J].Journal of Computer Applications,2017,37(2):530-534.(in Chinese)王晓斌,黄金杰,刘文举.基于优化卷积神经网络结构的交通标志识别[J].计算机应用,2017,37(2):530-534. [16] ZEILER M D,FERGUS R.Visualizing and understanding convolutional networks[C]//Proceedings of European Conference on Computer Vision.Berlin,Germany:Springer,2014:818-833. [17] SERMANET P,LeCUN Y.Traffic sign recognition with multi-scale convolutional networks[C]//Proceedings of IJCNN'11.San Jose,USA:INNS,2011:2809-2813. [18] GLOROT X,BORDES A,BENGIO Y.Deep sparse rectifier neural networks[C]//Proceedings of the 14th International Conference on Artificial Intelligence and Statistics.Ft.Lauderdale,USA:[s.n.],2011:315-323. [19] SUN Wei,DU Hongji,ZHANG Xiaorui,et al.Traffic sign recognition method based on multi-layer feature CNN and extreme learning machine[J].Journal of University of Electronic Science and Technology of China,2018,47(3):343-349.(in Chinese)孙伟,杜宏吉,张小瑞,等.基于CNN多层特征和ELM的交通标志识别[J].电子科技大学学报,2018,47(3):343-349. [20] STALLKAMP J,SCHLIPSING M,SALMEN J,et al.Man vs.computer:benchmarking machine learning algorithms for traffic sign recognition[J].Neural Networks,2012,32:323-332. [21] ZAKLOUTA F,STANCIULESCU B.Real-time traffic sign recognition using spatially weighted HOG trees[C]//Proceedings of the 15th International Conference on Advanced Robotics.Washington D.C.,USA:IEEE Press,2011:61-66. |