[1] RAO A S,GUBBI J,MARUSIC S.Crowd event detection on optical flow manifolds[J].IEEE Transactions on Cybernetics,2016,46(7):1524-1537. [2] SOLERA F,CALDEEARA S,CUCCHIARA R.Socially constrained structural learning for groups detection in crowd[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,38(5):995-1008. [3] SNOUSSI W T.Detection of abnormal visual events via global optical flow orientation history[J].IEEE Transactions on Information Forensies and Security,2014,9(6):988-998. [4] XIONG Raorao,HU Xuemin,CHEN Long,et al.Abnormal crowd behavior detection using synthesized optical flow histogram[J].Computer Engineering,2017,43(10):228-233.(in Chinese) 熊饶饶,胡学敏,陈龙,等.利用综合光流直方图的人群异常行为检测[J].计算机工程,2017,43(10):228-233. [5] WANG T,CHEN J,SNOUSSI H.Online detection of abnormal events in video streams[J].Journal of Electrical and Computer Engineering,2013(20):1-12.2017. [6] LIU Chunwei,LUO Jianxu.A PSO-SVM classifier based on hybrid kernel function[J].Journal of East China University of Science and Technology(Natural Science Edition),2014,40(1):96-101.(in Chinese) 刘春卫,罗健旭.基于混合核函数的PSO-SVM分类算法[J].华东理工大学学报,2014,40(1):96-101. [7] ZHANG Yanhao,QIN Lei,JI Rongrong,et al.Social attribute-aware force model:exploiting richness of interaction for abnormal crowd detections[J].IEEE Transactions on Circuits and Systems for Video Technology,2015,25(7):1231-1245. [8] LI Meng,CHEN Ken,GUO Chunmei,et al.Abnormal crowd event detection by fusing saliency information and social force model[J].Opto-Electronic Engineering,2016,43(12):193-199.(in Chinese) 李萌,陈恳,郭春梅,等.融合显著性信息和社会力模型的人群异常检测[J].光电工程,2016,43(12):193-199. [9] YANG Yang,BI Ping,LIU Ying,et al.License plate image super-resolution based on convolutional neural network[C]//Proceedings of the 3rd IEEE International Conference on Image,Vision and Computing.Washington D.C.,USA:IEEE Press,2018:1231-1245. [10] MARK J J P,VAN G,GINNEKEN B V,et al.Automatic quantification of geographic atrophy in autofluorescence images of Stargardt patients[J].Investigative Ophthalmology and Visual Science,2015,56:52-58. [11] REDMON J,FARHADI A.Yolov3:an incremental improvement[EB/OL].[2019-03-20].https://www.researchgate.net/publication/. [12] LI Zhou,HUANG Miaohua.Vehicle detections based on YOLO v2in real-time[J].China Mechanical Engineering,2018,29(15):1869-1874.(in Chinese)黎洲,黄妙华.基于YOLO_v2模型的车辆实时检测[J].中国机械工程,2018,29(15):1869-1874. [13] REDMON J,DIVVALA S,GORSHICK R,et al.You look only once:unified,real-tome object detection[C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition.Boston,USA:IEEE Press,2016:779-788. [14] HU Xuemin,CHEN Qin,YANG Li,et al.Detection and location of crowd abnormal behavior based on deep spatiotemporal convolutional neural network[J].Computer Applications and Software,2019,37(3):1001-3695.(in Chinese)胡学敏,陈钦,杨丽,等.基于深度时空卷积神经网络的人群异常行为检测和定位[J].计算机应用与软件,2019,37(3):1001-3695. [15] CHEN Chunyu,SHAO Yu,BI Xiaojun,et al.Detection of anomalous crowd behavior based on the acceleration feature[J].IEEE Sensors Journal,2015,15(12):2213-2235. [16] HUANG G B,ZHOU Q Y,SIEW C K,et al.Extreme learning machine:a new learning scheme of feedforward networks with random hidden nods[J].IEEE Transactions on Neural Networks,2006,17(4):879-892. [17] SU Hongjun,DU Qian,CHEN Genshe,et al.Optimized hyperspectral band selection Using particle swarm optimization[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2014,7(6):2659-2670. [18] ZHANG Wenbo,JI Hongbing,WANG Lei,et al.Multiple hidden layer output matrices extreme learning machine[J].Systems Engineering and Electronics,2014,36(8):1656-1659.(in Chinese)张文博,姬红兵,王磊,等.多隐层输出矩阵极限学习机[J].系统工程与电子技术,2014,36(8):1656-1659. [19] XU Mingliang,LI Chunxu,LU Pei,et al.An efficient method of crowd aggregation computation in public areas[J].IEEE Transactions on Circuits and Systems for Video Technology,2018,28(10):2814-2825. |