[1] MAO Huihuang,XIE Wenchong,XU Peng,et al.A method based on probability definition with extended samples to generate spatial-temporal correlated sea clutter for airborne radar[J].Acta Armamentarii,2019,40(3):530-538.(in Chinese)毛辉煌,谢文冲,徐鹏,等.基于概率定义扩展样本的机载雷达空间和时间相关海杂波数据仿真方法[J].兵工学报,2019,40(3):530-538. [2] WATTS S.Modeling and simulation of coherent seaclutter[J].IEEE Transactions on Aerospace and Electronic Systems,2012,48(4):3303-3317. [3] SOFIANI R,HEIDAR H,KAZEROONI M.An efficient raw data simulation algorithm for large complex marine targets and extended sea clutter in spotlight SAR[J].Microwave and Optical Technology Letters,2018,60(5):1223-1230. [4] ZHAO Wenjing,JIN Minglu.Maximum eigenvalue matrix CFAR detection using pre-processing in sea clutter..https://www.researchgate.net/publication/334404991_Maximum_Eigenvalue_Matrix_CFAR_Detection_Using_Pre-processing_in_Sea_Clutter. [5] ZHU Jieli,TANG Jun.K-distribution clutter simulation methods based on improved ZMNL and SIRP[J].Journal of Radars,2014,3(5):533-540.(in Chinese)朱洁丽,汤俊.基于改进的ZMNL和SIRP的K分布杂波模拟方法[J].雷达学报,2014,3(5):533-540. [6] XU Jun,QING Duzheng,MA Jing,et al.Simulation of ground clutter based on GPU and RTX[C]//Proceedings of 2016 Communications in Computer and Information Science.Berlin,Germany:Springer,2016:452-459. [7] GONZÁLEZ D J,EXPÓSITO R R.Accelerating binary biclustering on platforms with CUDA-enabled GPUs[J].Information Sciences,2019,496(9):317-325. [8] SUBBIAH A,OGUNFUNMI T.A flexible hybrid BCH decoder for modern NAND flash memories using General Purpose Graphical Processing Units(GPGPUs)[J].Micromachines,2019,10(6):365-366. [9] ZHANG Pengfei.Clutter simulation of airborne radar based on CUDA[D].Xi'an:Xidian University,2013.(in Chinese)张鹏飞.基于CUDA的机载雷达杂波仿真[D].西安:西安电子科技大学,2013. [10] WU Qi.Modeling and simulation research on airborne radar nonuniform clutter in complex coastal background[D].Chengdu:University of Electronic Science and Technology of China,2015.(in Chinese)吴奇.滨海复杂背景下机载雷达非均匀杂波的建模与仿真研究[D].成都:电子科技大学,2015. [11] SONG Peitao,ZHANG Zhijian,LIANG Liang,et al.Study on optimization of parallel efficiency of CPU-GPU heterogeneous parallelization for MOC neutron transport calculation[J].Atomic Energy Science and Technology,2019,53(11):2209-2217.(in Chinese)宋佩涛,张志俭,梁亮,等.基于CPU-GPU异构并行的MOC中子输运计算并行效率优化研究[J].原子能科学技术,2019,53(11):2209-2217. [12] ZHOU Qi,CHAI Xiaoli,MA Kejie,et al.Design and implementation of Tucker decomposition module based on CUDA and CUBLAS[J].Computer Engineering,2019,45(3):41-46.(in Chinese)周琦,柴小丽,马克杰,等.基于CUDA与CUBLAS的Tucker分解模块设计与实现[J].计算机工程,2019,45(3):41-46. [13] LEE D U,CHEUNG R,VILLASENOR J,et al.Inversion-based hardwaregaussian random number generator:a case study of function evaluation via hierarchical segmentation[C]//Proceedings of 2006 IEEE International Conference on Field Programmable Technology.Washington D.C.,USA:IEEE Press,2006:33-40. [14] HU Yue,WU Yan,CHEN Yi,et al.Gaussian random number generator:implemented in FPGA for quantum key distribution[J].International Journal of Numerical Modelling:Electronic Networks,Devices and Fields,2019,32(3):1-15. [15] LEE D U,LUK W,VILLASENOR J D,et al.A hardware Gaussian noise generator using the Wallace method[J].IEEE Transactions on Very Large Scale Integration Systems,2005,13(8):911-920. [16] SHEE J,ARTHUR E J,ZHANG S W,et al.Phaseless auxiliary-field quantum monte carlo on graphical processing units[J].Journal of Chemical Theory and Computation,2018,14(8):4109-4121. [17] MATSUFURU H,SUMIYOSHI K.Simulation of supernova explosion accelerated on GPU:spherically symmetric neutrino-radiation hydrodynamics[C]//Proceedings of ICCSA'18.Berlin,Germany:Springer,2018:440-455. [18] LI Zhi,SUN Yubao,WANG Feng,et al.Clothing image classification and retrieval algorithm based on deep convolutional neural network[J].Computer Engineering,2016,42(11):309-315.(in Chinese)厉智,孙玉宝,王枫,等.基于深度卷积神经网络的服装图像分类检索算法[J].计算机工程,2016,42(11):309-315. [19] HE Guixia,GAO Jiaquan,WANG Jun.Efficient dense matrix-vector multiplication on GPU[J].Concurrency and Computation:Practice and Experience,2018,30(19):1-17. [20] LI J,WU J J,JEON G.GPU-based lossless compression of aurora spectral data using online DPCM[J].Remote Sensing,2019,11(14):1635-1670. [21] LING Hulongxiang,WU Jiaji,WU Zhensen,et al.Parallel computation of EM backscattering from large three-dimensional sea surface with CUDA[J].Sensors,2018,18(11):3656-3659. [22] TANG Yang,ZHAO Dafei,HUANG Zhibin,et al.High performance row-based hashing GPU SpGEMM[J].Journal of Beijing University of Posts and Telecom-munications,2019,42(3):106-113.(in Chinese)汤洋,赵达非,黄智濒,等.高性能行任务散列法GPU一般稀疏矩阵-矩阵乘法[J].北京邮电大学学报,2019,42(3):106-113. [23] SONG Peitao,ZHANG Zhijian,ZHANG Qian,et al.Implementation of the CPU/GPU hybrid parallel method of characteristics neutron transport calculation using the heterogeneous cluster with dynamic workload assignment[J].Annals of Nuclear Energy,2020,131(4):257-272. [24] HE Qiang,LI Yongjian,HUANG Weifeng,et al.Parallel simulations of large-scale particle-fluid two-phase flows with the Lattice Boltzmann Method(LBM)based on an MPI+OpenMP mixed programming model[J].Journal of Tsinghua University(Natural Science Edition),2019,59(10):847-853.(in Chinese)何强,李永健,黄伟峰,等.基于MPI+OpenMP混合编程模式的大规模颗粒两相流LBM并行模拟[J].清华大学学报(自然科学版),2019,59(10):847-853. [25] CHIKIN A,LLOYD T,AMARAL J N,et al.Memory-access-aware safety and profitability analysis for transformation of accelerator-bound OpenMP loops[J].ACM Transactions on Architecture and Code Optimization,2019,16(3):1-26. |