[1] MANDHARE H C,IDATE S R.A comparative study of cluster based outlier detection,distance based outlier detection and density based outlier detection techniques[C]//Proceedings of 2017 International Conference on Intelligent Computing and Control Systems.Washington D.C.,USA:IEEE Press,2017:931-935. [2] GENG Juncheng,ZHANG Xiaofei,ZHOU Qingjie,et al.A low voltage electricity theft identification method based on improved LOF[J].Advances of Power System & Hydroelectric Engineering,2019,35(11):30-36.(in Chinese) 耿俊成,张小斐,周庆捷,等.基于局部离群点检测的低压台区用户窃电识别[J].电网与清洁能源,2019,35(11):30-36. [3] MAO Jiali,JIN Cheqing,ZHANG Zhigang,et al.Anomaly detection for trajectory big data:advancements and framework[J].Journal of Software,2017,28(1):17-34.(in Chinese). 毛嘉莉,金澈清,章志刚,等.轨迹大数据异常检测:研究进展及系统框架[J].软件学报,2017,28(1):17-34. [4] FU Peiguo,HU Xiaohui.Anomaly detection algorithm based on the local distance of density-based sampling data[J].Journal of Software,2017,28(10):2625-2639.(in Chinese). 付培国,胡晓惠.基于密度偏倚抽样的局部距离异常检测方法[J].软件学报,2017,28(10):2625-2639. [5] STONE-GROSS B,COVA M,CAVALLARO L,et al.Your botnet is my botnet:analysis of a botnet takeover[C]//Proceedings of 2009 ACM Conference on Computer and Communications Security.New York,USA:ACM Press,2009:635-647. [6] KRIEGEL H P,SCHUBERT M,ZIMEK A.Angle-based outlier detection in high-dimensional data[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2008:444-452. [7] SHOU Zhaoyu,ZOU Fengbo,TIAN Hao,et al.Outlier detection based on local density of vector dot product in data stream[C]//Proceedings of International Conference on Security with Intelligent Computing and Big-data Services.Berlin,Germany:Springer,2018:1-5. [8] STALMANS E,IRWIN B.A framework for DNS based detection and mitigation of malware infections on a network[C]//Proceedings of IEEE Information Security South Africa Conference.Washington D.C.,USA:IEEE Press,2011:1-5. [9] YU Liping,LI Yunfei,ZHU Shixing.Anomaly detection algorithm based on high-dimensional data stream[J].Computer Engineering,2018,44(1):51-55.(in Chinese) 余立苹,李云飞,朱世行.基于高维数据流的异常检测算法[J].计算机工程,2018,44(1):51-55. [10] NI Weiwei,LU Jieping,CHEN Geng,et al.An efficient data stream outliers detection algorithm based on k-means partitioning[J].Journal of Computer Research and Development,2006,43(9):1639-1643.(in Chinese) 倪巍伟,陆介平,陈耿,等.基于k均值分区的数据流离群点检测算法[J].计算机研究与发展,2006,43(9):1639-1643. [11] CAO Lei,YANG Di,WANG Qingyang,et al.Scalable distance-based outlier detection over high-volume data streams[C]//Proceedings of the 30th IEEE International Conference on Data Engineering.Washington D.C.,USA:IEEE Press,2014:76-87. [12] POKRAJAC D,LAZAREVIC A,LATECKI L J.Incremental local outlier detection for data streams[C]//Proceedings of 2007 IEEE Symposium on Computational Intelligence and Data Mining.Washington D.C.,USA:IEEE Press,2007:1-10. [13] YE H,KITAGAWA H,XIAO J.Continuous angle-based outlier detection on high-dimensional data streams[C]//Proceedings of the 19th International Database Engineering and Applications Symposium.New York,USA:ACM Press,2015:647-652. [14] BREUNIG M M,KRIEGEL H P,NG R T,et al.LOF:identifying density-based local outliers[C]//Proceedings of ACM SIGMOD International Conference on Management of Data.New York,USA:ACM Press,2000:1-5. [15] GAO K,SHAO F J,SUN R C.n-INCLOF:a dynamic local outlier detection algorithm for data streams[C]//Proceedings of International Conference on Signal Processing Systems.Washington D.C.,USA:IEEE Press,2010:179-183. [16] THAKRAN Y,TOSHNIWAL D.Unsupervised outlier detection in streaming data using weighted clustering[C]//Proceedings of International Conference on Intelligent Systems Design and Applications.Washington D.C.,USA:IEEE Press,2012:947-952. [17] KRIEGEL H P,KRÖGER P,ZIMEK A.Outlier detection techniques[C]//Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2010:1-5. [18] PHAM N,PAGH R.A near-linear time approximation algorithm for angle-based outliner detection in high dimensional data[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM Press,2012:877-885. [19] ZHANG Ji,GAO Qigang,WANG Hai.Outlier detection for high-dimensional data streams[C]//Proceedings of ACM SIGMOD International Conference on Management of Data.New York:ACM Press,2015:37-46. [20] HAN J W,MICHELINE K.Data mining:concepts and techniques[M].2nd edition.[S.l.]:Elsevier,2006. |