[1] ZHONG V,XIONG C,SOCHER R.Seq2SQL:generating structured queries from natural language using reinforcement learning[EB/OL].[2019-12-10].https://arxiv.org/pdf/1709.00103.pdf. [2] GIORDANI A,MOSCHITTI A.Automatic generation and reranking of SQL-derived answers to NL questions[C]//Proceedings of International Workshop on Eternal Systems.Berlin,Germany:Springer,2012:59-76. [3] DE MARNEFFE M C,MACCARTNEY B,MANNING C D.Generating typed dependency parses from phrase structure parses[C]//Proceedings of IEEE International Conference on Language Resources and Evaluation.Washington D.C.,USA:IEEE Press,2006:449-454. [4] SHEN L,JOSHI A K.An SVM-based voting algorithm with application to parse reranking[C]//Proceedings of the 7th Conference on Natural Language Learning at HLT-NAACL.Washington D.C.,USA:IEEE Press,2003:9-16. [5] POON H.Grounded unsupervised semantic parsing[C]//Proceedings of the 51st ACM Annual Meeting of the Association for Computational Linguistics.New York,USA:ACM Press,2013:933-943. [6] LI F,JAGADISH H V.Constructing an interactive natural language interface for relational databases[J].Proceedings of the VLDB Endowment,2014,8(1):73-84. [7] ZHOU Junsheng,QU Weiguang,XU Juhong,et al.Research on the implementation of Chinese GIS natural language interface based on semantic analysis[J].Journal of Chinese Information Processing,2014,28(6):62-69.(in Chinese)周俊生,曲维光,许菊红,等.基于语义解析的中文GIS自然语言接口实现研究[J].中文信息学报,2014,28(6):62-69. [8] BAHDANAU D,CHO K.Neural machine translation by jointly learning to align and translate[EB/OL].[2019-12-10].https://arxiv.org/pdf/1409.0473.pdf. [9] DONG L,LAPATA M.Language to logical form with neural attention[EB/OL].[2019-12-10].https://arxiv.org/pdf/1601.01280.pdf. [10] XU Xiaojun,LIU Chang,SONG Dawen.SQLNET:generating structured queries from natural language without reinforcement learning[EB/OL].[2019-12-10].https://arxiv.org/pdf/1711.04436.pdf. [11] YU Tao,LI Zofan,ZHANG Zilin,et al.Typesql:knowledge-based type-aware neural text-to-SOL generation[EB/OL].[2019-12-10].https://arxiv.org/pdf/1804.09769.pdf. [12] SHI T,TATEAEADI K,CHAKRABARTI K,et al.IncSQL:training incremental text-to-SQL parsers with non-deterministic oracles[EB/OL].[2019-12-10].https://arxiv.org/abs/1809.05054. [13] WANG C,TATWAWADI K,BROCKSCHMIDT M,et al.Robust text-to-SOL generation with execution-guided decoding[EB/OL].[2019-12-10].https://arxiv.org/pdf/1807.03100.pdf. [14] HWANG W,YIM J,PARK S,et al.A comprehensive exploration on WikiSQL with table-aware word contextualization[EB/OL].[2019-12-10].https://arxiv.org/pdf/1902.01069.pdf. [15] DEVLIN J,CHANG M W,LEE K,et al.Bert:pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.Minneapolis,USA:Association for Computational Linguistics 2019:4171-4186. [16] PENNINGTON J,SOCHER R,MANNING C.GloVe:global vectors for word representation[C]//Proceedings of IEEE Conference on Empirical Methods in Natural Language Processing.Washington D.C.,USA:IEEE Press,2014:1532-1543. [17] HE P,MAO Y,CHAKRABARTI K,et al.X-SQL:reinforce schema representation with context[EB/OL].[2019-12-10].https://arxiv.org/abs/1908.08113v1. [18] LIU Xiaodong,HE Pengcheng,CHEN Weizhu,et al.Multi-task deep neural networks for natural language understanding[EB/OL].[2019-12-10].https://arxiv.org/pdf/1901.11504.pdf. [19] PETERS M E,NEUMANN M,IYYER M,et al.Deep contextualized word representations[EB/OL].[2019-12-10].https://arxiv.org/pdf/1802.05365.pdf. [20] WU Xukang,YANG Xuguang,CHEN Yuanyuan,et al.Topic combined word vector model[J].Computer Engineering,2018,44(2):233-237,270.(in Chinese)吴旭康,杨旭光,陈园园,等.主题联合词向量模型[J].计算机工程,2018,44(2):233-237,270. [21] DONG L,LAPATA M.Coarse-to-fine decoding for neural semantic parsing[EB/OL].[2019-12-10].https://arxiv.org/pdf/1805.04793.pdf. |