[1] GUERRERO-IBÁÑEZ J A, FLORES-CORTÉS C, ZEADALLY S.Vehicular Ad-hoc Networks(VANETs):architecture, protocols and applications[M]//NAVEEN C, SHERALI Z, HAKIMA C.Next-generation wireless technologies.Berlin, Germany:Springer, 2013:49-70. [2] GOLESTAN K, JUNDI A, NASSAR L, et al.Vehicular Ad-hoc Networks(VANETs):capabilities, challenges in information gathering and data fusion[C]//Proceedings of International Conference on Autonomous and Intelligent Systems.Berlin, Germany:Springer, 2012:34-41. [3] PANDEY P K, KANSAL V, SWAROOP A.Vehicular Ad hoc Networks(VANETs):architecture, challenges, and applications[M]//UDAI S, SARVESH P.Handling Priority Inversion in Time-Constrained Distributed Databases.[S.l.]:IGI Global, 2020:224-239. [4] QURESHI K N, ABDULLAH A H, KAIWARTYA O, et al.A dynamic congestion control scheme for safety applications in vehicular ad hoc networks[J].Computers & Electrical Engineering, 2018, 72:774-788. [5] 谭国真, 韩国栋, 张福新, 等.基于网络效用最大化理论的分布式车联网拥塞控制策略[J].通信学报, 2019, 40(2):82-91. TAN G Z, HAN G D, ZHANG F X, et al.Distributed congestion control strategy using network utility maximization theory in VANET[J].Journal on Communications, 2019, 40(2):82-91.(in Chinese) [6] SHARMA S, CHAHAL M, HARIT S.Transmission rate-based congestion control in vehicular ad hoc networks[C]//Proceedings of 2019 Amity International Conference on Artificial Intelligence.Washington D.C., USA:IEEE Press, 2019:303-307. [7] AMER H, AL-KASHOASH H, KHAMI M J, et al.Non-cooperative game based congestion control for data rate optimization in vehicular ad hoc networks[J].Ad Hoc Networks, 2020, 107:1-5. [8] REGIN R, MENAKADEVI T.Dynamic clustering mechanism to avoid congestion control in vehicular ad hoc networks based on node density[J].Wireless Personal Communications, 2019, 107(4):1911-1931. [9] GHAFOOR K Z, BAKAR K A, EENENNAAM M, et al.A fuzzy logic approach to beaconing for vehicular ad hoc networks[J].Telecommunication Systems, 2013, 52(1):139-149. [10] 李帅兵, 谭国真, 张福新, 等.一种车联网自适应功率控制策略[J].小型微型计算机系统, 2017, 38(1):72-76. LI S B, TAN G Z, ZHANG F X, et al.Adaptive power control strategy for VANET[J].Journal of Chinese Computer Systems, 2017, 38(1):72-76.(in Chinese) [11] SHAH S A A, AHMED E, XIA F, et al.Coverage differentiation based adaptive TX-power for congestion and awareness control inVANETs[J].Mobile Networks and Applications, 2018, 23(5):1194-1205. [12] ZENG F, ZHANG R, CHENG X, et al.Channel prediction based scheduling for data dissemination in VANETs[J].IEEE Communications Letters, 2017, 21(6):1409-1412. [13] ZEMOURI S, DJAHEL S, MURPHY J.An altruistic prediction-based congestion control for strict beaconing requirements in urban VANETs[J].IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2018, 49(12):2582-2597. [14] IEEE 802.11 Working Group.IEEE standard for information technology-telecommunications and information exchange between systems-local and metropolitan area networks~specific requirements-part 11:wireless LAN Medium Access Control(MAC) and Physical Layer(PHY) specifications amendment 6:wireless access in vehicular environments:ANSI/IEEE Std 802.11-1999[S].Washington D.C., USA:IEEE Press, 1999. [15] US Federal Communications Commission.Standard specification for telecommunications and information exchange between roadside and vehicle systems-5 GHz band Dedicated Short Range Communications(DSRC) Medium Access Control(MAC) and Physical Layer(PHY) specifications:ASTM E2213-2003[S].Washington D.C., USA:ASTM, 2003. [16] QIAN J, JING T, HUO Y, et al.An adaptive beaconing scheme based on traffic environment parameters prediction in VANETs[C]//Proceedings of International Conference on Wireless Algorithms, Systems, and Applications.Berlin, Germany:Springer, 2016:524-535. [17] CHAABOUNI N, HAFID A, SAHU P K.A collision-based beacon rate adaptation scheme(CBA) for VANETs[C]//Proceedings of 2013 IEEE International Conference on Advanced Networks and Telecommunications Systems.Washington D.C., USA:IEEE Press, 2013:1-6. [18] 袁涛.基于IEEE 802.11p的车载自组网MAC层关键技术研究[D].南京:南京邮电大学, 2013. YU T, Research on key technologies of MAC in VANETs based on IEEE 802.11p[D].Nanjing:Nanjing University of Posts and Telecommunications, 2013.(in Chinese) [19] SOMMER C, JOERER S, SEGATA M, et al.How shadowing hurts vehicular communications and how dynamic beaconing can help[J].IEEE Transactions on Mobile Computing, 2014, 14(7):1411-1421. [20] PARK Y, KIM H.Application-level frequency control of periodic safety messages in the IEEE WAVE[J].IEEE Transactions on Vehicular Technology, 2012, 61(4):1854-1862. [21] 余翔, 唐金华, 王诗言.基于信道负载预测的VANET传输功率控制算法[J].计算机应用研究, 2019, 36(1):183-185. YU X, TANG J H, WANG S Y.Transmission power control algorithm based on channel load forecasting in VANET[J].Application Research of Computers, 2019, 36(1):183-185.(in Chinese) [22] BANSAL G, KENNEY J B, ROHRS C E.LIMERIC:a linear adaptive message rate algorithm for DSRC congestion control[J].IEEE Transactions on Vehicular Technology, 2013, 62(9):4182-4197. [23] SINGH Y, RATHI S K.Performance evaluation of ad hoc routing protocols in VANET using NS-3 simulator[C]//Proceedings of 2020 International Seminar on Application for Technology of Information and Communication.Washington D.C., USA:IEEE Press, 2020:1-5. [24] JAMEEL F, HAIDER M A A, BUTT A A.Performance analysis of VANETs under Rayleigh, Rician, Nakagami-m and Weibull fading[C]//Proceedings of 2017 International Conference on Communication, Computing and Digital Systems.Washington D.C., USA:IEEE Press, 2017:127-132. |