[1] ČEBIRIĆ Š, GOASDOUÉ F, KONDYLAKIS H, et al.Summarizing semantic graphs:a survey[J].The VLDB Journal, 2019, 28(3):295-327. [2] MEIMARIS M, PAPASTEFANATOS G, MAMOULIS N, et al.Extended characteristic sets:graph indexing for SPARQL query optimization[C]//Proceedings of the 33rd International Conference on Data Engineering.Washington D.C., USA:IEEE Press, 2017:497-508. [3] SALEEM M, POTOCKI A, SORU T, et al.CostFed:cost-based query optimization for SPARQL endpoint federation[J].Procedia Computer Science, 2018, 137:163-174. [4] MONTOYA G, SKAF-MOLLI H, HOSE K.The odyssey approach for optimizing federated SPARQL queries[C]//Proceedings of ISWC'17.Berlin, Germany:Springer, 2017:471-489. [5] QUDUS U, SALEEM M, NGONGA N, et al.An empirical evaluation of cost-based federated SPARQL query processing engines[J].Semantic Web, 2021, 12(6):843-868. [6] ZAVERI A, RULA A, MAURINO A, et al.Quality assessment for linked data:a survey[J].Semantic Web, 2015, 7(1):63-93. [7] ČEBIRIĆ Š, GOASDOUÉ F, MANOLESCU I.Query-oriented summarization of RDF graphs[J].Proceedings of the VLDB Endowment, 2015, 8(12):2012-2015. [8] PHAM M D, PASSING L, ERLING O, et al.Deriving an emergent relational schema from RDF data[C]//Proceedings of the 24th International Conference on World Wide Web.Geneva, Switzerland:International World Wide Web Conferences Steering Committee, 2015:864-874. [9] OZKAN E C, SALEEM M, DOGDU E, et al.UPSP:unique predicate-based source selection for SPARQL endpoint federation[EB/OL].[2021-11-07].http://ceur-ws.org/Vol-1597/PROFILES2016_paper4.pdf. [10] HELING L.Quality-driven query processing over federated RDF data sources[C]//Proceedings of ESWC'19.Berlin, Germany:Springer, 2019:210-216. [11] HELING L, ACOSTA M.Characteristic sets profile features:estimation and application to SPARQL query planning[EB/OL].[2021-11-07].https://content.iospress.com/articles/semantic-web/sw222903. [12] CHARALAMBIDIS A, TROUMPOUKIS A.SemaGrow:optimizing federated SPARQL queries[C]//Proceedings of the 11th International Conference on Semantic Systems.New York, USA:ACM Press, 2015:121-128 [13] LIU M L, ÖZSU T.Encyclopedia of database systems[M].2nd ed.Berlin, Germany:Springer, 2018. [14] SAKR S, ZOMAYA A.Encyclopedia of big data technologies[M].Berlin, Germany:Springer, 2018. [15] GRUBENMANN T, BERNSTEIN A, MOOR D, et al.Challenges of source selection in the WoD[C]//Proceedings of International Semantic Web Conference.Berlin, Germany:Springer, 2017:313-321. [16] HELING L, ACOSTA M.Cost- and robustness-based query optimization for linked data fragments[C]//Proceedings of International Semantic Web Conference.Berlin, Germany:Springer, 2020:238-248. [17] RIETVELD L, HOEKSTRA R, SCHLOBACH S, et al.Structural properties as proxy for semantic relevance in RDF graph sampling[M].Berlin, Germany:Springer, 2014. [18] ELLEFI M B, BELLAHSENE Z, BRESLIN J G, et al.RDF dataset profiling-a survey of features, methods, vocabularies and applications[J].Semantic Web, 2018, 9(5):677-705. [19] FERNANDEZ J D, MARTINEZ-PRIETO M A, REDONDO P D, et al.Characterising RDF data sets[J].Journal of Information Science, 2018, 44(2):203-229. [20] AUER S, DEMTER J, MARTIN M, et al.LODStats-an extensible framework for high-performance dataset analytics[C]//Proceedings of International Conference on Knowledge Engineering and Knowledge Management.Berlin, Germany:Springer, 2012:353-362. [21] KHATCHADOURIAN S, CONSENS M P.ExpLOD:summary-based exploration of interlinking and RDF usage in the linked open data cloud[C]//Proceedings of ESWC'20.Berlin, Germany:Springer, 2020:1-19. [22] DEBATTISTA J, LONDONO S, LANGE C, et al.Quality assessment of linked datasets using probabilistic approximation[M].Berlin, Germany:Springer, 2015. [23] SOULET A, SUCHANEK F M.Anytime large-scale analytics of linked open data[M].Berlin, Germany:Springer, 2019. [24] LESKOVEC J, FALOUTSOS C.Sampling from large graphs[C]//Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York, USA:ACM Press, 2006:631-636. [25] RIBEIRO B, WANG P H, MURAI F, et al.Sampling directed graphs with random walks[C]//Proceedings of IEEE INFOCOM'12.Washington D.C., USA:IEEE Press, 2012:1692-1700. [26] SALEEM M, HASNAIN A, NGONGA NGOMO A C.LargeRDFBench:a billion triples benchmark for SPARQL endpoint federation[J].Journal of Web Semantics, 2018, 48:85-125. [27] MOERKOTTE G, NEUMANN T, STEIDL G.Preventing bad plans by bounding the impact of cardinality estimation errors[J].Proceedings of the VLDB Endowment, 2009, 2(1):982-993. |