1 |
HAMMI B, FAYAD A, KHATOUN R, et al. A lightweight ECC-based authentication scheme for Internet of Things(IoT). IEEE Systems Journal, 2020, 14(3): 3440- 3450.
doi: 10.1109/JSYST.2020.2970167
|
2 |
RIVEST R L, SHAMIR A, ADLEMAN L. A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 1978, 21(2): 120- 126.
doi: 10.1145/359340.359342
|
3 |
KOBLITZ N. Elliptic curve cryptosystems. Mathematics of Computation, 1987, 48(177): 203- 209.
doi: 10.1090/S0025-5718-1987-0866109-5
|
4 |
MILLER V S. Use of elliptic curves in cryptography[C]//Proceedings of Theory and Application of Crypto-graphic Techniques Conference. Berlin, Germany: Springer, 2007: 417-426.
|
5 |
LAUTER K. The advantages of elliptic curve cryptography for wireless security. IEEE Wireless Communications, 2004, 11(1): 62- 67.
doi: 10.1109/MWC.2004.1269719
|
6 |
HOSSAIN M S, KONG Y N, SAEEDI E, et al. High-performance elliptic curve cryptography processor over NIST prime fields. IET Computers & Digital Techniques, 2017, 11(1): 33- 42.
|
7 |
YEH L Y, CHEN P J, PAI C C, et al. An energy-efficient dual-field elliptic curve cryptography processor for Internet of things applications. IEEE Transactions on Circuits and Systems, 2020, 67(9): 1614- 1618.
|
8 |
BASU ROY D, MUKHOPADHYAY D. High-speed implementation of ECC scalar multiplication in GF(p) for generic Montgomery curves. IEEE Transactions on Very Large Scale Integration Systems, 2019, 27(7): 1587- 1600.
doi: 10.1109/TVLSI.2019.2905899
|
9 |
MONTGOMERY P L. Modular multiplication without trial division. Mathematics of Computation, 1985, 44(170): 519- 521.
doi: 10.1090/S0025-5718-1985-0777282-X
|
10 |
WALTER C D. Montgomery exponentiation needs no final subtractions. Electronics Letters, 1999, 35(21): 1831.
doi: 10.1049/el:19991230
|
11 |
MANOCHEHRI K, POURMOZAFARI S. Modified radix-2 Montgomery modular multiplication to make it faster and simpler[C]//Proceedings of International Conference on Information Technology: Coding and Computing. Washington D. C., USA: IEEE Press, 2005: 598-602.
|
12 |
KUANG S R, WANG J P, CHANG K C, et al. Energy-efficient high-throughput Montgomery modular multipliers for RSA cryptosystems. IEEE Transactions on Very Large Scale Integration Systems, 2013, 21(11): 1999- 2009.
doi: 10.1109/TVLSI.2012.2227846
|
13 |
KUANG S R, WU K Y, LU R Y. Low-cost high-performance VLSI architecture for Montgomery modular multiplication. IEEE Transactions on Very Large Scale Integration Systems, 2016, 24(2): 434- 443.
doi: 10.1109/TVLSI.2015.2409113
|
14 |
ZHANG B, CHENG Z M, PEDRAM M. An iterative Montgomery modular multiplication algorithm with low area-time product. IEEE Transactions on Computers, 2023, 72(1): 236- 249.
doi: 10.1109/TC.2022.3154164
|
15 |
ZHANG B, CHENG Z M, PEDRAM M. High-radix design of a scalable Montgomery modular multiplier with low latency. IEEE Transactions on Computers, 2022, 71(2): 436- 449.
doi: 10.1109/TC.2021.3052999
|
16 |
BIE M N, LI W, CHEN T, et al. An energy-efficient reconfigurable asymmetric modular cryptographic operation unit for RSA and ECC. Frontiers of Information Technology & Electronic Engineering, 2022, 23(1): 134- 144.
|
17 |
KARATSUBA A A, OFMAN Y P. Multiplication of many-digital numbers by automatic computers. Doklady Akademii Nauk SSSR, 1962, 145(2): 293- 294.
|
18 |
CHOW G C T, EGURO K, LUK W, et al. A karatsuba-based Montgomery multiplier[C]//Proceedings of International Conference on Field Programmable Logic and Applications. Washington D. C., USA: IEEE Press, 2011: 434-437.
|
19 |
FENG X A, LI S G. A high performance FPGA implementation of 256-bit elliptic curve cryptography processor over GF(p). IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2015, 98(3): 863- 869.
|
20 |
DING J N, LI S G. Broken-Karatsuba multiplication and its application to Montgomery modular multiplication[C]//Proceedings of the 27th International Conference on Field Programmable Logic and Applications. Washington D. C., USA: IEEE Press, 2017: 1-4.
|
21 |
DING J N, LI S G. A low-latency and low-cost Montgomery modular multiplier based on NLP multiplication. IEEE Transactions on Circuits and Systems, 2020, 67(7): 1319- 1323.
|
22 |
LEE M M O, CHO B L. Ultra-high speed parallel multiplier with new first partial product addition algorithm[C]//Proceedings of the 4th International Conference on ASIC. Washington D. C., USA: IEEE Press, 2002: 592-595.
|
23 |
GU Z, LI S G. An implementation of karatsuba-based Montgomery modular multiplication with only half-size additions[C]//Proceedings of IEEE International Symposium on Circuits and Systems. Washington D. C., USA: IEEE Press, 2018: 1-5.
|
24 |
GU Z, LI S G. A division-free toom-cook multiplication-based Montgomery modular multiplication. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66(8): 1401- 1405.
doi: 10.1109/TCSII.2018.2886962
|