1 |
罗衡荣. 基于胃镜图像的食管早癌病灶计算机辅助诊断方法研究[D]. 成都: 电子科技大学, 2015.
|
|
LUO H R. Study on the computer-assisted diagnostic of early esophageal cancer based on endoscopy images[D]. Chengdu: University of Electronic Science and Technology of China, 2015. (in Chinese)
|
2 |
牛娜, 张文俊, 陆小锋, 等. 早期食管癌诊断的多色彩空间定量分析方法. 电视技术, 2012, 36 (11): 134-137, 147
URL
|
|
NIU N, ZHANG W J, LU X F, et al. Quantitative analysis in multi-color spaces for early esophageal cancer diagnosis. Video Engineering, 2012, 36 (11): 134-137, 147
URL
|
3 |
WANG X, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//Proceedings of the Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 7794-7803.
|
4 |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2015: 3431-3440.
|
5 |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany: Springer, 2015: 234-241.
|
6 |
吉彬, 任建君, 郑秀娟, 等. 改进U-Net在喉白斑病灶分割中的应用. 计算机工程, 2020, 46 (9): 248- 253.
URL
|
|
JI B, REN J J, ZHENG X J, et al. Application of improved U-Net in segmentation of laryngeal leukoplakia lesion. Computer Engineering, 2020, 46 (9): 248- 253.
URL
|
7 |
CHEN W L, ZHANG Y, HE J J, et al. Prostate segmentation using 2D bridged U-net[C]//Proceedings of International Joint Conference on Neural Networks. Washington D. C., USA: IEEE Press, 2019: 1-7.
|
8 |
ZHOU Z W, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. UNet++: a nested U-Net architecture for medical image segmentation[C]//Proceedings of International Workshop on Deep Learning in Medical Image Analysis. Berlin, Germany: Springer, 2018: 3-11.
|
9 |
|
10 |
WANG W, YU K C, HUGONOT J, et al. Recurrent U-net for resource-constrained segmentation[C]//Proceedings of International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2020: 2142-2151.
|
11 |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40 (4): 834- 848.
doi: 10.1109/TPAMI.2017.2699184
|
12 |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[EB/OL]. [2022-06-18]. https://arxiv.org/pdf/1412.7062.pdf.
|
13 |
|
14 |
CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 833-851.
|
15 |
谭镭, 孙怀江. SKASNet: 用于语义分割的轻量级卷积神经网络. 计算机工程, 2020, 46 (9): 261- 267.
URL
|
|
TAN L, SUN H J. SKASNet: lightweight convolutional neural network for semantic segmentation. Computer Engineering, 2020, 46 (9): 261- 267.
URL
|
16 |
ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 6230-6239.
|
17 |
HUANG Z L, WANG X G, HUANG L C, et al. CCNet: criss-cross attention for semantic segmentation[C]//Proceedings of International Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 603-612.
|
18 |
景庄伟, 管海燕, 彭代峰, 等. 基于深度神经网络的图像语义分割研究综述. 计算机工程, 2020, 46 (10): 1- 17.
URL
|
|
JING Z W, GUAN H Y, PENG D F, et al. Survey of research in image semantic segmentation based on deep neural network. Computer Engineering, 2020, 46 (10): 1- 17.
URL
|
19 |
WANG H Y, ZHU Y K, GREEN B, et al. Axial-DeepLab: stand-alone axial-attention for panoptic segmentation[C]//Proceedings of Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 108-126.
|
20 |
VALANARASU J M J, OZA P, HACIHALILOGLU I, et al. Medical transformer: gated axial-attention for medical image segmentation[C]//Proceedings of Medical Image Computing and Computer Assisted Intervention. Berlin, Germany: Springer, 2021: 36-46.
|
21 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 5998-6008.
|
22 |
CHEN J N, LU Y Y, YU Q H, et al. TransUNet: Transformers make strong encoders for medical image segmentation[EB/OL]. [2022-06-18]. https://arxiv.org/abs/2102.04306.
|
23 |
GUO R H, NIU D T, QU L, et al. SOTR: segmenting objects with transformers[C]//Proceedings of International Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 7137-7146.
|
24 |
FU J, LIU J, TIAN H J, et al. Dual attention network for scene segmentation[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 3141-3149.
|
25 |
ZHENG S X, LU J C, ZHAO H S, et al. Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 6877-6886.
|