1 |
ROBINSON I, WEBBER J, EIFREM E. Graph databases: new opportunities for connected data. Sebastopol, USA: O'Reilly, 2015.
|
2 |
刘宝珠, 王鑫, 柳鹏凯, 等. KGDB: 统一模型和语言的知识图谱数据库管理系统. 软件学报, 2021, 32 (3): 781- 804.
URL
|
|
LIU B Z, WANG X, LIU P K, et al. KGDB: knowledge graph database system with unified model and query language. Journal of Software, 2021, 32 (3): 781- 804.
URL
|
3 |
王鑫, 邹磊, 王朝坤, 等. 知识图谱数据管理研究综述. 软件学报, 2019, 30 (7): 2139- 2174.
URL
|
|
WANG X, ZOU L, WANG C K, et al. Research on knowledge graph data management: a survey. Journal of Software, 2019, 30 (7): 2139- 2174.
URL
|
4 |
饶志宏, 刘杰, 陈剑锋. 面向网络监测预警的海量知识存储研究. 计算机工程, 2018, 44 (3): 138- 143.
URL
|
|
RAO Z H, LIU J, CHEN J F. Research on massive knowledge storage for network monitoring and early warning. Computer Engineering, 2018, 44 (3): 138- 143.
URL
|
5 |
CATTUTO C, QUAGGIOTTO M, PANISSON A, et al. Time-varying social networks in a graph database: a Neo4j use case[C]//Proceedings of the 1st International Workshop on Graph Data Management Experiences and Systems. New York, USA: ACM Press, 2013: 1-6.
|
6 |
DJIDJEV H, SANDINE G, STORLIE C, et al. Graph based statistical analysis of network traffic[C]//Proceedings of the 9th Workshop on Mining and Learning with Graphs. Washington D. C., USA: IEEE Press, 2011: 367-378.
|
7 |
AKOGLU L, TONG H H, KOUTRA D. Graph based anomaly detection and description: a survey. Data Mining and Knowledge Discovery, 2015, 29 (3): 626- 688.
doi: 10.1007/s10618-014-0365-y
|
8 |
王健宗, 孔令炜, 黄章成, 等. 图神经网络综述. 计算机工程, 2021, 47 (4): 1- 12.
URL
|
|
WANG J Z, KONG L W, HUANG Z C, et al. Survey of graph neural network. Computer Engineering, 2021, 47 (4): 1- 12.
URL
|
9 |
DAVOUDIAN A, CHEN L, LIU M C. A survey on NoSQL stores. ACM Computing Surveys, 2018, 51 (2): 22- 43.
|
10 |
COMYN-WATTIAU I, AKOKA J. Model driven reverse engineering of NoSQL property graph databases: the case of Neo4j[C]//Proceedings of IEEE International Conference on Big Data. Washington D. C., USA: IEEE Press, 2018: 453-458.
|
11 |
TAN K L, CAI Q C, OOI B C, et al. In-memory databases. ACM SIGMOD Record, 2015, 44 (2): 35- 40.
|
12 |
POLYCHRONIOU O, RAGHAVAN A, ROSS K A. Rethinking SIMD vectorization for in-memory databases[C]//Proceedings of 2015 ACM SIGMOD International Conference on Management of Data. New York, USA: ACM Press, 2015: 1493-1508.
|
13 |
CHANG L, WANG Z W, MA T, et al. HAWQ: a massively parallel processing SQL engine in hadoop[C]//Proceedings of 2014 ACM SIGMOD International Conference on Management of Data. New York, USA: ACM Press, 2014: 1223-1234.
|
14 |
ANGLES R, ARENAS M, BARCELÓ P, et al. Foundations of modern query languages for graph databases. ACM Computing Surveys, 2017, 50 (5): 68- 79.
|
15 |
|
16 |
|
17 |
|
18 |
TIAN Y Y, XU E L, ZHAO W, et al. IBM Db2 graph: supporting synergistic and retrofittable graph queries inside IBM Db2[C]//Proceedings of 2020 ACM SIGMOD International Conference on Management of Data. New York, USA: ACM Press, 2020: 345-359.
|
19 |
SUN W, FOKOUE A, SRINIVAS K, et al. SQLGraph: an efficient relational-based property graph store[C]//Proceedings of 2015 ACM SIGMOD International Conference on Management of Data. New York, USA: ACM Press, 2015: 1887-1901.
|
20 |
|
21 |
RODRIGUEZ M A. The Gremlin graph traversal machine and language (invited talk)[C]//Proceedings of the 15th Symposium on Database Programming Languages. New York, USA: ACM Press, 2015: 1-10.
|
22 |
STEER B A, ALNAIMI A, LOTZ M A B F G, et al. Cytosm: declarative property graph queries without data migration[C]//Proceedings of the 5th International Workshop on Graph Data-management Experiences & Systems. New York, USA: ACM Press, 2017: 1-6.
|
23 |
|
24 |
O'NEIL P, CHENG E, GAWLICK D, et al. The Log-Structured Merge-tree(LSM-tree). Acta Informatica, 1996, 33 (4): 351- 385.
|
25 |
DONG S, CALLAGHAN M, GALANIS L, et al. Optimizing space amplification in RocksDB[C]// Proceedings of CIDRʼ17. Washington D. C., USA: IEEE Press, 2017: 256-268.
|