1 |
石彩霞, 李书琴, 刘斌. 多重检验加权融合的短文本相似度计算方法. 计算机工程, 2021, 47 (2): 95- 102.
URL
|
|
SHI C X, LI S Q, LIU B. Method for calculating short text similarity using multi-check weighted fusion. Computer Engineering, 2021, 47 (2): 95- 102.
URL
|
2 |
TAI K, SOCHER R, MANNING C D. Improved semantic representations from tree-structured long short-term memory networks[EB/OL]. [2022-09-05]. https://arxiv.org/abs/1503.00075.
|
3 |
GAN Z, PU Y C, HENAO R, et al. Learning generic sentence representations using convolutional neural networks[C]//Proceedings of 2017 Conference on Empirical Methods in Natural Language Processing. [S. l. ]: Association for Computational Linguistics, 2017: 2380-2390.
|
4 |
HUY N T, NGUYEN M L. Multilingual opinion mining on YouTube-A convolutional N-gram BiLSTM word embedding. Information Processing & Management, 2018, 54 (3): 451- 462.
|
5 |
ZHANG C, CHEN L, LI Q. A Chinese text similarity calculation algorithm based on DF_LDA[C]//Proceedings of the 6th International Asia Conference on Industrial Engineering and Management Innovation. Paris, France: Atlantis Press, 2015: 627-634.
|
6 |
YANG J, LI Y, GAO C, et al. Measuring the short text similarity based on semantic and syntactic information. Future Generation Computer Systems, 2021, 114, 169- 180.
doi: 10.1016/j.future.2020.07.043
|
7 |
ZHANG P Y, HUANG X Z, WANG Y Q, et al. Semantic similarity computing model based on multi model fine-grained nonlinear fusion. IEEE Access, 2021, 9, 8433- 8443.
doi: 10.1109/ACCESS.2021.3049378
|
8 |
JI M Y, ZHANG X H. A short text similarity calculation method combining semantic and headword attention mechanism. Scientific Programming, 2022, 15, 1- 9.
|
9 |
FAROUK M. Measuring sentences similarity based on discourse representation structure. Computing and Informatics, 2020, 39 (3): 464- 480.
doi: 10.31577/cai_2020_3_464
|
10 |
|
11 |
李强龙, 周新文, 位梦恩, 等. 基于条形池化和注意力机制的街道场景红外目标检测算法. 计算机工程, 2023, 49 (8): 310- 320.
URL
|
|
LI Q L, ZHOU X W, WEI M E, et al. Infrared target detection algorithm for street scene based on bar pooling and attention mechanism. Computer Engineering, 2023, 49 (8): 310- 320.
URL
|
12 |
王燕, 范林, 赵妮妮. 利用门控网络构建用户动态兴趣的序列推荐模型. 计算机工程, 2022, 48 (8): 283- 291.
URL
|
|
WANG Y, FAN L, ZHAO N N. Sequential recommendation model using gated network to construct user's dynamic interest. Computer Engineering, 2022, 48 (8): 283- 291.
URL
|
13 |
CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing. [S. l. ]: Association for Computational Linguistics, 2014: 1724-1734.
|
14 |
WANG L, CAO H, YUAN L. Gated tree-structured RecurNN for detecting biomedical event trigger. Applied Soft Computing, 2022, 126, 109251.
doi: 10.1016/j.asoc.2022.109251
|
15 |
王宇航. 基于关键词和语法树的文本风格迁移模型[D]. 上海: 华东师范大学, 2022.
|
|
WANG Y H. Text style transfer model based on keyword and grammar tree[D]. Shanghai: East China Normal University, 2022. (in Chinese)
|
16 |
TIEN N H, LE N M, TOMOHIRO Y, et al. Sentence modeling via multiple word embeddings and multi-level comparison for semantic textual similarity. Information Processing & Management, 2019, 56 (6): 102090.
|
17 |
杨萌. 文本语义相似度计算方法研究及应用[D]. 苏州: 苏州大学, 2017.
|
|
YANG M. Research and application of computing method of text semantic similarity[D]. Suzhou: Soochow University, 2017. (in Chinese)
|
18 |
MAHARJAN N, BANJADE R, GAUTAM D, et al. DT_Team at SemEval-2017 Task 1: semantic similarity using alignments, sentence-level embeddings and Gaussian mixture model output[C]//Proceedings of the 11th International Workshop on Semantic Evaluation. [S. l. ]: Association for Computational Linguistics, 2017: 120-124.
|
19 |
TIAN J F, ZHOU Z H, LAN M, et al. ECNU at SemEval-2017 Task 1: leverage kernel-based traditional NLP features and neural networks to build a universal model for multilingual and cross-lingual semantic textual similarity[C]//Proceedings of the 11th International Workshop on Semantic Evaluation. [S. l. ]: Association for Computational Linguistics, 2017: 191-197.
|
20 |
WU H, HUANG H Y, JIAN P, et al. BIT at SemEval-2017 Task 1: using semantic information space to evaluate semantic textual similarity[C]//Proceedings of the 11th International Workshop on Semantic Evaluation. [S. l. ]: Association for Computational Linguistics, 2017: 77-84.
|
21 |
JI Y, EISENSTEIN J. Discriminative improvements to distributional sentence similarity[C]//Proceedings of 2013 Conference on Empirical Methods in Natural Language Processing. [S. l. ]: Association for Computational Linguistics, 2013: 891-896.
|
22 |
冯月春, 陈惠娟. 改进Bi-LSTM的文本相似度计算方法. 计算机工程与设计, 2022, 43 (5): 1397- 1403.
URL
|
|
FENG Y C, CHEN H J. Text similarity calculation method using improved Bi-LSTM. Computer Engineering and Design, 2022, 43 (5): 1397- 1403.
URL
|
23 |
徐菲菲, 冯东升. 基于注意力机制的Siamese-BiLSTM短文本相似度算法. 计算机应用与软件, 2022, 39 (4): 281-286, 325.
URL
|
|
XU F F, FENG D S. Short text similarity algorithm with Siamese-BiLSTM network based on attention mechanism. Computer Applications and Software, 2022, 39 (4): 281-286, 325.
URL
|
24 |
CONNEAU A, KIELA D, SCHWENK H, et al. Supervised learning of universal sentence representations from natural language inference data[EB/OL]. [2022-09-05]. https://arxiv.org/abs/1705.02364.
|
25 |
胡超文, 邬昌兴, 杨亚连. 基于扩展的S-LSTM的文本蕴含识别. 计算机研究与发展, 2020, 57 (7): 1481- 1489.
URL
|
|
HU C W, WU C X, YANG Y L. Extended S-LSTM based textual entailment recognition. Journal of Computer Research and Development, 2020, 57 (7): 1481- 1489.
URL
|
26 |
ZHANG Y, ROLLER S, WALLACE B C. MGNC-CNN: a simple approach to exploiting multiple word embeddings for sentence classification[C]//Proceedings of 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. [S. l. ]: Association for Computational Linguistics, 2016: 1522-1527.
|
27 |
YIN W P, SCHÜTZE H. Multichannel variable-size convolution for sentence classification[C]//Proceedings of the 19th Conference on Computational Natural Language Learning. [S. l. ]: Association for Computational Linguistics, 2015: 204-214.
|
28 |
SOLIMAN N F, ABD-ALHALEM S M, EL-SHAFAI W, et al. Hybrid approach for taxonomic classification based on deep learning. Intelligent Automation & Soft Computing, 2022, 32 (3): 1881- 1891.
|
29 |
NGUYEN H T, DUONG P H, CAMBRIA E. Learning short-text semantic similarity with word embeddings and external knowledge sources. Knowledge-Based Systems, 2019, 182, 104842.
|