作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2023, Vol. 49 ›› Issue (12): 35-45. doi: 10.19678/j.issn.1000-3428.0066260

• 计算机系统前沿技术 • 上一篇    下一篇

基于FPGA的Izhikevich神经元定制计算方法

叶钧超1, 徐聪1, 黄尧1, 柴志雷1,2,*   

  1. 1. 江南大学 人工智能与计算机学院, 江苏 无锡 214122
    2. 江苏省模式识别与计算智能工程实验室(江南大学), 江苏 无锡 214122
  • 收稿日期:2022-11-15 出版日期:2023-12-15 发布日期:2023-12-13
  • 通讯作者: 柴志雷
  • 作者简介:

    叶钧超(1996—),男,硕士研究生,主研方向为计算机体系结构

    徐聪,硕士研究生

    黄尧,硕士研究生

  • 基金资助:
    国家自然科学基金(61972180)

FPGA-based Customized Computing Method for Izhikevich Neuron

Junchao YE1, Cong XU1, Yao HUANG1, Zhilei CHAI1,2,*   

  1. 1. School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, Jiangsu, China
    2. Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence(Jiangnan University), Wuxi 214122, Jiangsu, China
  • Received:2022-11-15 Online:2023-12-15 Published:2023-12-13
  • Contact: Zhilei CHAI

摘要:

脉冲神经网络作为第三代神经网络,其工作机理与生物大脑更接近,层内连接与反向连接的复杂拓扑结构具有解决复杂问题的潜力。神经元和突触是脉冲神经网络中最基本的计算单元,相比于带泄露积分触发神经元模型,Izhikevich神经元模型能通过模拟出更多的生物脉冲现象来支持更广泛的类脑仿真计算,但Izhikevich神经元模型的计算复杂度更高,基于其搭建的脉冲神经网络存在低性能、高功耗的问题。提出一种基于FPGA的Izhikevich神经元定制计算方法。首先,通过研究脉冲神经网络中Izhikevich神经元各参数的取值范围以及平衡膜电位的相对误差与资源消耗,设计一套混合精度的定点化方案;其次,针对单个神经元,通过平衡神经元更新计算方程的数据路径实现最小化流水;再次,针对整体脉冲神经网络,设计并行度可扩展的计算架构以适应不同规模的FPGA平台;最后,把该定制计算方法用于经典的NEST仿真器加速。实验结果表明,相比于i7-10700 CPU,经典的丘脑外侧膝状核网络模型和液体状态机模型在ZCU102上的性能平均提升2.26和3.02倍,能效比平均提升8.06和10.8倍。

关键词: Izhikevich神经元, 混合精度, 脉冲神经网络, 定制计算, FPGA

Abstract:

As a third-generation neural network, the Spiking Neural Network(SNN) uses neurons and synapses as the basic computing units, and its working mechanism is similar to that of the biological brain. Its complex topology of intra-layer connections and reverse connections has the potential to solve complex problems. Compared with the Leaky-Integrate-and-Fire(LIF) model, the Izhikevich neuron model can support a wider range of neuromorphic computing by simulating more biological impulse phenomena; however, the Izhikevich neuron model has higher computational complexity, leading to potential issues of suboptimal performance and increased power consumption within the network. To address these problem, a customized calculation method of Izhikevich neurons based on FPGA is proposed. First, by studying the value range of the parameters of Izhikevich neurons in the SNN and balancing the relative errors of the membrane potential and resource consumption, a fixed-point solution with mixed-precision is designed. Second, for a single neuron, the data path of the calculation equation is updated by balancing the neuron to achieve the minimum pipeline length. Furthermore, at the network level, a scalable computing architecture is devised to accommodate varying FPGA scales, ensuring adaptability across different configurations. Finally, the customized computing method is used to accelerate the classical NEST simulator. The experimental results reveal that, compared with that of the i7-10700 CPU, the performance of the classic lateral geniculate nucleus network model and the liquid state machine model on the ZCU102 is 2.26 and 3.02 times better in average, and the energy efficiency ratio is improved by 8.06 and 10.8 times in average.

Key words: Izhikevich neuron, mixed-precision, Spiking Neural Network(SNN), customized computing, FPGA