1 |
GERSTNER W, KISTLER W M, NAUD R, et al. Neuronal dynamics: from single neurons to networks and models of cognition. Cambridge, UK: Cambridge University Press, 2014.
|
2 |
JOHNSON A P, LIU J X, MILLARD A G, et al. Homeostatic fault tolerance in spiking neural networks: a dynamic hardware perspective. IEEE Transactions on Circuits and Systems Ⅰ: Regular Papers, 2017, 65(2): 687- 699.
|
3 |
MARCHISIO A, PIRA G, MARTINA M, et al. R-SNN: an analysis and design methodology for robustifying spiking neural networks against adversarial attacks through noise filters for dynamic vision sensors[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Washington D. C., USA: IEEE Press, 2021: 6315-6321.
|
4 |
OSSWALD M, IENG S H, BENOSMAN R, et al. A spiking neural network model of 3D perception for event-based neuromorphic stereo vision systems. Scientific Reports, 2017, 7, 40703.
doi: 10.1038/srep40703
|
5 |
张铁林, 徐波. 脉冲神经网络研究现状及展望. 计算机学报, 2021, 44(9): 1767- 1785.
URL
|
|
ZHANG T L, XU B. Research advances and perspectives on spiking neural networks. Chinese Journal of Computers, 2021, 44(9): 1767- 1785.
URL
|
6 |
HAN B, SRINIVASAN G, ROY K. RMP-SNN: residual membrane potential neuron for enabling deeper high-accuracy and low-latency spiking neural network[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 13555-13564.
|
7 |
高嘉潞, 于强, 唐华锦, 等. 联合突触权重和延迟可塑性的高效多脉冲学习算法研究. 计算机学报, 2022, 45(10): 2065- 2079.
URL
|
|
GAO J L, YU Q, TANG H J, et al. Research on efficient multi-pulse learning algorithm combining synaptic weight and delay plasticity. Chinese Journal of Computers, 2022, 45(10): 2065- 2079.
URL
|
8 |
KIM S, PARK S, NA B, et al. Spiking-YOLO: spiking neural network for energy-efficient object detection. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 11270- 11277.
doi: 10.1609/aaai.v34i07.6787
|
9 |
KOUL S, HORIUCHI T K. Waypoint path planning with synaptic-dependent spike latency. IEEE Transactions on Circuits and Systems Ⅰ: Regular Papers, 2019, 66(4): 1544- 1557.
doi: 10.1109/TCSI.2018.2882818
|
10 |
NAVEROS F, LUQUE N R, ROS E, et al. VOR adaptation on a humanoid iCub robot using a spiking cerebellar model. IEEE Transactions on Cybernetics, 2020, 50(11): 4744- 4757.
doi: 10.1109/TCYB.2019.2899246
|
11 |
IZHIKEVICH E M. Simple model of spiking neurons. IEEE Transactions on Neural Networks, 2003, 14(6): 1569- 1572.
doi: 10.1109/TNN.2003.820440
|
12 |
GERSTNER W, KISTLER W M. Spiking neuron models: single neurons, populations, plasticity. Cambridge, UK: Cambridge University Press, 2002.
|
13 |
SKOCIK M J, LONG L N. On the capabilities and computational costs of neuron models. IEEE Transactions on Neural Networks and Learning Systems, 2013, 25(8): 1474- 1483.
|
14 |
KHUN J, NOVOTNÝ M, SKRBEK M. High-performance spiking neural network simulator[C]//Proceedings of the 8th Mediterranean Conference on Embedded Computing. Washington D. C., USA: IEEE Press, 2019: 1-4.
|
15 |
栗学磊, 朱效民, 魏彦杰, 等. 神威太湖之光加速计算在脑神经网络模拟中的应用. 计算机学报, 2020, 43(6): 1025- 1037.
URL
|
|
LI X L, ZHU X M, WEI Y J, et al. Application of Sunway TaihuLight accelerating in brain neural network simulation. Chinese Journal of Computers, 2020, 43(6): 1025- 1037.
URL
|
16 |
NURVITADHI E, SHEFFIELD D, SIM J, et al. Accelerating binarized neural networks: comparison of FPGA, CPU, GPU, and ASIC[C]//Proceedings of International Conference on Field-Programmable Technology. Washington D. C., USA: IEEE Press, 2017: 77-84.
|
17 |
ELNABAWY A, ABDELMOHSEN H, MOUSTAFA M, et al. A low power CORDIC-based hardware implementation of Izhikevich neuron model[C]//Proceedings of the 16th IEEE International New Circuits and Systems Conference. Washington D. C., USA: IEEE Press, 2018: 130-133.
|
18 |
HEIDARPUR M, AHMADI A, AHMADI M, et al. CORDIC-SNN: on-FPGA STDP learning with Izhikevich neurons. IEEE Transactions on Circuits and Systems Ⅰ: Regular Papers, 2019, 66(7): 2651- 2661.
doi: 10.1109/TCSI.2019.2899356
|
19 |
WANG J P, PENG Z X, ZHAN Y, et al. A high-accuracy and energy-efficient CORDIC based Izhikevich neuron with error suppression and compensation[C]//Proceedings of IEEE Transactions on Biomedical Circuits and Systems. Washington D. C., USA: IEEE Press, 2022: 807-821.
|
20 |
SAPOUNAKI M, KAKAROUNTAS A. A high-performance neuron for artificial neural network based on Izhikevich model[C]//Proceedings of the 29th International Symposium on Power and Timing Modeling, Optimization and Simulation. Washington D. C., USA: IEEE Press, 2019: 29-34.
|
21 |
SAPOUNAKI M, KAKAROUNTAS A. A novel low-power neuromorphic circuit based on Izhikevich model[C]//Proceedings of the 10th International Conference on Modern Circuits and Systems Technologies. Washington D. C., USA: IEEE Press, 2021: 1-4.
|
22 |
HEIDARPUR M, AHMADI A, AHMADI M. Time step impact on performance and accuracy of Izhikevich neuron: software simulation and hardware implementation[C]//Proceedings of IEEE International Symposium on Circuits and Systems. Washington D. C., USA: IEEE Press, 2020: 1-5.
|
23 |
刘家航, 郁龚健, 李佩琦, 等. 基于SNN神经元重分布的NEST仿真器性能优化. 计算机工程, 2022, 48(3): 189- 196.
URL
|
|
LIU J H, YU G J, LI P Q, et al. Performance optimization of NEST simulator based on SNN neuron relocation. Computer Engineering, 2022, 48(3): 189- 196.
URL
|
24 |
KASTNER S, SCHNEIDER K A, WUNDERLICH K. Beyond a relay nucleus: neuroimaging views on the human LGN. Progress in Brain Research, 2006, 155, 125- 143.
|
25 |
AJINA S, BRIDGE H. Blindsight relies on a functional connection between hMT+ and the lateral geniculate nucleus, not the pulvinar. PLoS Biology, 2018, 16(7): e2005769.
|
26 |
KAISER J, STAL R, SUBRAMONEY A, et al. Scaling up liquid state machines to predict over address events from dynamic vision sensors. Bioinspiration & Biomimetics, 2017, 12(5): 055001.
|