1 |
GHAFOOR K Z, KONG L, ZEADALLY S, et al. Millimeter-wave communication for Internet of vehicles: status, challenges, and perspectives. IEEE Internet of Things Journal, 2020, 7(9): 8525- 8546.
doi: 10.1109/JIOT.2020.2992449
|
2 |
VA V, SHIMIZU T, BANSAL G, et al. Millimeter wave vehicular communications: a survey. Foundations and Trends in Networking, 2016, 10(1): 1- 113.
doi: 10.1561/1300000054
|
3 |
CHOI J, VA V, GONZALEZ-PRELCIC N, et al. Millimeter-wave vehicular communication to support massive automotive sensing. IEEE Communications Magazine, 2016, 54(12): 160- 167.
doi: 10.1109/MCOM.2016.1600071CM
|
4 |
GIORDANI M, ZANELLA A, ZORZI M. Millimeter wave communication in vehicular networks: challenges and opportunities[C]//Proceedings of the 6th International Conference on Modern Circuits and Systems Technologies. Washington D. C., USA: IEEE Press, 2017: 1-6.
|
5 |
何尔利, 纪澎善, 贾向东, 等. 位置协助的无人机毫米波通信网络自适应信道估计. 计算机工程, 2020, 46(6): 196- 201.
URL
|
|
HE E L, JI P S, JIA X D, et al. Position-aided adaptive channel estimation for mmWave communication network of UAV. Computer Engineering, 2020, 46(6): 196- 201.
URL
|
6 |
DENG J, TIRKKONEN O, FREIJ-HOLLANTI R, et al. Resource allocation and interference management for opportunistic relaying in integrated mmWave/sub-6 GHz 5G networks. IEEE Communications Magazine, 2017, 55(6): 94- 101.
doi: 10.1109/MCOM.2017.1601120
|
7 |
FAROOQ M J, ELSAWY H, ALOUINI M S. A stochastic geometry model for multi-hop highway vehicular communication. IEEE Transactions on Wireless Communications, 2016, 15(3): 2276- 2291.
doi: 10.1109/TWC.2015.2501817
|
8 |
LIN X, ANDREWS J G. Connectivity of millimeter wave networks with multi-hop relaying. IEEE Wireless Communications Letters, 2015, 4(2): 209- 212.
doi: 10.1109/LWC.2015.2397884
|
9 |
王桐, 王鹏, 柳冰忆. 城市环境下跨层VANET路由协议研究. 计算机工程, 2017, 43(11): 55- 65.
URL
|
|
WANG T, WANG P, LIU B Y. Research on cross-layer routing protocol in VANET under urban environment. Computer Engineering, 2017, 43(11): 55- 65.
URL
|
10 |
LI Z, XIANG L, GE X, et al. Latency and reliability of mmWave multi-hop V2V communications under relay selections. IEEE Transactions on Vehicular Technology, 2020, 69(9): 9807- 9821.
doi: 10.1109/TVT.2020.3002903
|
11 |
LI S, LI Z, GE X, et al. Multi-hop links quality analysis of 5G enabled vehicular networks [C]//Proceedings of the 9th International Conference on Wireless Communications and Signal Processing. Washington D. C., USA: IEEE Press, 2017: 1-6.
|
12 |
RASHEED I, HU F. Intelligent super-fast vehicle-to-everything 5G communications with predictive switching between mmWave and THz links. Vehicular Communications, 2021, 27, 100303.
doi: 10.1016/j.vehcom.2020.100303
|
13 |
DU S, HOU J, SONG S, et al. A geographical hierarchy greedy routing strategy for vehicular big data communi-cations over millimeter wave. Physical Communication, 2020, 40, 101065.
doi: 10.1016/j.phycom.2020.101065
|
14 |
WANG P, FANG J, YUAN X, et al. Intelligent reflecting surface-assisted millimeter wave communications: joint active and passive precoding design. IEEE Transactions on Vehicular Technology, 2020, 69(12): 14960- 14973.
doi: 10.1109/TVT.2020.3031657
|
15 |
GONG S, LU X, HOANG D T, et al. Toward smart wireless communications via intelligent reflecting surfaces: a contemporary survey. IEEE Communications Surveys Tutorials, 2020, 22(4): 2283- 2314.
doi: 10.1109/COMST.2020.3004197
|
16 |
WU Q, ZHANG S, ZHENG B, et al. Intelligent reflecting surface-aided wireless communications: a tutorial. IEEE Transactions on Communications, 2021, 69(5): 3313- 3351.
doi: 10.1109/TCOMM.2021.3051897
|
17 |
王丹, 梁家敏, 刘金枝, 等. 6G可重构智能表面的相移模型设计. 计算机应用, 2021, 41(9): 2694- 2698.
|
|
WANG D, LIANG J M, LIU J Z, et al. Phase shift model design for 6G reconfigurable intelligent surface. Journal of Computer Applications, 2021, 41(9): 2694- 2698.
|
18 |
WU Q, ZHANG R. Towards smart and reconfigurable environment: intelligent reflecting surface aided wireless network. IEEE Communications Magazine, 2020, 58(1): 106- 112.
doi: 10.1109/MCOM.001.1900107
|
19 |
曾嵘, 杭潇. 车联网环境下可重构智能反射面辅助无线信道估计算法. 通信学报, 2022, 43(8): 142- 150.
|
|
ZENG R, HANG X. Reconfigurable intelligent surface assist wireless channel estimation algorithm in Internet of vehicles environment. Journal on Communications, 2022, 43(8): 142- 150.
|
20 |
BJÖRNSON E, ÖZDOGAN Ö, LARSSON E G. Intelligent reflecting surface versus decode-and-forward: how large surfaces are needed to beat relaying?. IEEE Wireless Communications Letters, 2020, 9(2): 244- 248.
doi: 10.1109/LWC.2019.2950624
|
21 |
ABDULLAH Z, CHEN G, LAMBOTHARAN S, et al. A hybrid relay and intelligent reflecting surface network and its ergodic performance analysis. IEEE Wireless Communications Letters, 2020, 9(10): 1653- 1657.
doi: 10.1109/LWC.2020.2999918
|
22 |
ABDULLAH Z, CHEN G, LAMBOTHARAN S, et al. Optimization of intelligent reflecting surface assisted full-duplex relay networks. IEEE Wireless Communications Letters, 2021, 10(2): 363- 367.
doi: 10.1109/LWC.2020.3031343
|
23 |
PAN S, ZHANG X, SUNG D K. Intelligent reflecting surface-aided centralized scheduling for mmWave V2V networks[C]//Proceedings of 2022 International Conference on Computer Communications and Networks. Washington D. C., USA: IEEE Press, 2022: 1-10.
|
24 |
SINGH G, SRIVASTAVA A, BOHARA V A. Visible light and reconfigurable intelligent surfaces for beyond 5G V2X communication networks at road intersections. IEEE Transactions on Vehicular Technology, 2022, 71(8): 8137- 8151.
doi: 10.1109/TVT.2022.3174131
|
25 |
RASHEED I, HU F, HONG Y K, et al. Intelligent vehicle network routing with adaptive 3D beam alignment for mmWave 5G-based V2X communications. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(5): 2706- 2718.
|
26 |
COLL-PERALES B, GOZALVEZ J, GRUTESER M. Sub-6 GHz assisted MAC for millimeter wave vehicular communications. IEEE Communications Magazine, 2019, 57(3): 125- 131.
doi: 10.1109/MCOM.2019.1800509
|
27 |
CHEN Y, WANG Y, ZHANG J, et al. Resource allocation for intelligent reflecting surface aided vehicular communica-tions. IEEE Transactions on Vehicular Technology, 2020, 69(10): 12321- 12326.
doi: 10.1109/TVT.2020.3010252
|
28 |
SERIES M. Guidelines for evaluation of radio interface technologies for IMT-Advanced. Report ITU, 2009, 638, 1- 72.
|
29 |
YAMAMOTO A, OGAWA K, HORIMATSU T, et al. Path-loss prediction models for intervehicle communication at 60 GHz. IEEE Transactions on Vehicular Technology, 2008, 57(1): 65- 78.
doi: 10.1109/TVT.2007.901890
|
30 |
NAJAFI M, JAMALI V, SCHOBER R, et al. Physics-based modeling and scalable optimization of large intelligent reflecting surfaces. IEEE Transactions on Communica-tions, 2021, 69(4): 2673- 2691.
doi: 10.1109/TCOMM.2020.3047098
|
31 |
MA X, YIN X, WILSON M, et al. MAC and application-level broadcast reliability in VANETs with channel fading[C]//Proceedings of 2013 International Conference on Computing, Networking and Communications. Washington D. C., USA: IEEE Press, 2013: 756-761.
|
32 |
TAYA A, NISHIO T, MORIKURA M, et al. Concurrent transmission scheduling for perceptual data sharing in mmWave vehicular networks. IEICE Transactions on Information and Systems, 2019, 102(5): 952- 962.
|
33 |
RELLANO W, MAHGOUB I. TrafficModeler extensions: a case for rapid VANET simulation using, OMNET++, SUMO, and VEINS[C]//Proceedings of 2013 Conference on High Capacity Optical Networks and Emerging/Enabling Technologies. Washington D. C., USA: IEEE Press, 2013: 109-115.
|