[1] 吴铁洲, 邹智, 姜奔等. 基于 TLBGA-GRU 神经网络的
短期负荷预测[J]. 计算机工程, 2022, 48(11): 69-76.
WU T Z, ZOU Z, JIANG B, et al. Short-Term Load
Forecasting Based on TLBGA-GRU Neural Network[J].
Computer Engineering, 2022, 48(11): 69-76.
[2] HAN J, YAN L, LI Z. A task-based day-ahead load
forecasting model for stochastic economic dispatch[J].
IEEE Transactions on Power Systems, 2021, 36(6):
5294-5304.
[3] AKHTAR S, SHAHZAD S, ZAHEER A, et al. Short-Term
Load Forecasting Models: A Review of Challenges,
Progress, and the Road Ahead[J]. Energies, 2023, 16(10):
4060.
[4] ACQUAH M A, JIN Y, OH B C, et al. Spatiotempor
al Sequence-to-Sequence Clustering for Electric Load
Forecasting[J]. IEEE Access, 2023, 11: 5850-5863.
[5] YAN H, YU X, LI D, et al. Research on Commercial
Sector Electricity Load Model Based on Exponential
Smoothing Method[C]//International Conference on Ad
aptive and Intelligent Systems. Cham: Springer Interna
tional Publishing, 2022: 189-205.
[6] LIANG Z, ZHENG C Y, ZHAO Z G, et al. Short-ter
m load forecasting based on kalman filter and nonline
ar autoregressive neural network[C]//the 33rd Chinese
Control and Decision Conference (CCDC). IEEE, 202
1: 3747-3751.
[7] BIAN H, WANG Q, XU G, et al. Research on short-term
load forecasting based on accumulated temperature effect
and improved temporal convolutional network[J]. Energy
Reports, 2022, 8: 1482-1491.
[8] 曹正志,叶春明.基于并联CNN-SE-Bi-LSTM的轴承剩余
使用寿命预测[J].计算机应用研究,2021,38(07):2103-210
7.
CAO Z Z, YE C. Prediction of bearing remaining us
eful life based on parallel C-NN-SE-Bi-LSTM[J]. Ap
plication Research of Computers, 2021,38(07):2103-21
07.
[9] CHEN Z, ZHANG D, JIANG H, et al. Load forecasting
based on LSTM neural network and applicable to loads of
“replacement of coal with electricity”[J]. Journal of
Electrical Engineering & Technology, 2021, 16(5):
2333-2342.
[10] HAN M, ZHONG J, SANG P, et al. A Combined Model
Incorporating Improved SSA and LSTM Algorithms for
Short-Term Load Forecasting[J]. Electronics, 2022, 11(12):
1835.
[11] LIN J, MA J, ZHU J, et al. Short-term load forecasting
based on LSTM networks considering attention
mechanism[J]. International Journal of Electrical Power &
Energy Systems, 2022, 137: 107818.
[12] REN C, JIA L, WANG Z. A CNN-LSTM hybrid model
based short-term power load forecasting[C]//2021 Power
System and Green Energy Conference (PSGEC). IEEE,
2021: 182-186.
[13] YANG Z, LI X, KONG X, et al. A Method of Short-Term Load Prediction of Renewable Energy Power S
ystem Based on CNNLSTM[C]//the 25th International
Conference on Electrical Machines and Systems (ICE
MS). IEEE, 2022: 1-5.
[14] SAEED F, PAUL A, SEO H. A hybrid channel-comm
unication-enabled CNN-LSTM model for electricity loa
d forecasting[J]. Energies, 2022, 15(6): 2263.
[15] SHEN X, ZHAO H, XIANG Y, et al. Short-term electric
vehicles charging load forecasting based on deep learning
in low-quality data environments[J]. Electric Power
Systems Research, 2022, 212: 108247.
[16] ZHANG W, WANG T. Short-term power load forecasting
model design based on EMD-PSO-GRU[J]. Scientific
Programming, 2022, 2022.
[17] ZHUANG Z, ZHENG X, CHEN Z, et al. A reliable
short‐term power load forecasting method based on
VMD‐IWOA‐LSTM algorithm[J]. IEEJ Transactions
on Electrical and Electronic Engineering, 2022,17(8):1
121-1132.
[18] 袁东辉,朱愉洁,齐咏生等.一种增强型的滚动轴承故障
诊断[J].计算机仿真,2022,39(10):526-532.
YUAN D H, ZHU Y J, QI Y S, et al. An Enhanced
Fault Diagnosis of Rolling Bearing[J]. Computer Si
mulation,2022,39(10):526-532.
[19] YANG J, YAN K, WANG Z, et al. A Novel Denoisi
ng Method for Partial Discharge Signal Based on Imp
roved Variational Mode Decomposition[J]. Energies, 20
22, 15(21): 8167.
[20] YAN S, LIU W, LI X, et al. Comparative study and
improvement analysis of sparrow search algorithm[J].
Wireless Communications and Mobile Computing, 202
2, 2022.
[21] YUE Y, CAO L, LU D, et al. Review and empirical
analysis of sparrow search algorithm[J]. Artificial Intel
ligence Review, 2023: 1-53.
[22] XUE J, SHEN B. A novel swarm intelligence optimization
approach: sparrow search algorithm[J]. Systems science &
control engineering, 2020, 8(1): 22-34.
[23] LI J, LIU Z, QIU M, et al. Fault diagnosis model of rolling
bearing based on parameter adaptive VMD algorithm and
Sparrow Search Algorithm-Based PNN[J]. Maintenance &
Reliability/ Eksploatacja i Niezawodność, 2023, 25(2).
[24] ZHANG Z, LIU C, WANG R, et al. Mechanical Fault
Diagnosis of a Disconnector Operating Mechanism Based
on Vibration and the Motor Current[J]. Energies, 2022,
15(14): 5194.
[25] 韩富佳,王晓辉,乔骥等.基于人工智能技术的新型电力
系统负荷预测研究综述[J].中国电机工程学
报,2023,43(22):8569-8592.
HAN F J, WANG X H, QIAO J, et al. Review on Artificial
Intelligence Based Load Forecasting Research for the
New-type Power System [J]. Proceedings of the
CSEE,2023,43(22):8569-8592.
|