1 |
WONG W K, MING C I. A review on metaheuristic algorithms: recent trends, benchmarking and applications[C]//Proceedings of the 7th International Conference on Smart Computing & Communications. Washington D. C., USA: IEEE Press, 2019: 1-5.
|
2 |
MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer. Advances in Engineering Software, 2014, 69, 46- 61.
doi: 10.1016/j.advengsoft.2013.12.007
|
3 |
MIRJALILI S, LEWIS A. The whale optimization algorithm. Advances in Engineering Software, 2016, 95, 51- 67.
doi: 10.1016/j.advengsoft.2016.01.008
|
4 |
HEIDARI A A, MIRJALILI S, FARIS H, et al. Harris Hawks optimization: algorithm and applications. Future Generation Computer Systems, 2019, 97, 849- 872.
doi: 10.1016/j.future.2019.02.028
|
5 |
TANG J, LIU G, PAN Q T. A review on representative swarm intelligence algorithms for solving optimization problems: applications and trends. CAA Journal of Automatica Sinica, 2021, 8 (10): 1627- 1643.
doi: 10.1109/JAS.2021.1004129
|
6 |
GHAREHCHOPOGH F S, GHOLIZADEH H. A comprehensive survey: whale optimization algorithm and its applications. Swarm and Evolutionary Computation, 2019, 48, 1- 24.
doi: 10.1016/j.swevo.2019.03.004
|
7 |
陈凯, 龚毅光. 混合多目标灰狼算法求解多目标VRPTW问题. 计算机工程与应用, 2024, 60 (11): 309- 318.
doi: 10.3778/j.issn.1002-8331.2306-0383
|
|
CHEN K, GONG Y G. Hybrid multiple-objective grey wolf algorithm solving multi-objective vehicle routing problem with time windows. Computer Engineering and Applications, 2024, 60 (11): 309- 318.
doi: 10.3778/j.issn.1002-8331.2306-0383
|
8 |
孙林, 黄金旭, 徐久成. 基于邻域容差互信息和鲸鱼优化算法的非平衡数据特征选择. 计算机应用, 2023, 43 (6): 1842- 1854.
doi: 10.11772/j.issn.1001-9081.2022050691
|
|
SUN L, HUANG J X, XU J C. Feature selection for imbalanced data based on neighborhood tolerance mutual information and whale optimization algorithm. Journal of Computer Applications, 2023, 43 (6): 1842- 1854.
doi: 10.11772/j.issn.1001-9081.2022050691
|
9 |
AMER D A, ATTIYA G, ZEIDAN I, et al. Elite learning Harris Hawks optimizer for multi-objective task scheduling in cloud computing. The Journal of Supercomputing, 2022, 78 (2): 2793- 2818.
doi: 10.1007/s11227-021-03977-0
|
10 |
XUE J K, SHEN B. Dung beetle optimizer: a new meta-heuristic algorithm for global optimization. The Journal of Supercomputing, 2023, 79 (7): 7305- 7336.
doi: 10.1007/s11227-022-04959-6
|
11 |
ZHANG R Z, ZHU Y J. Predicting the mechanical properties of heat-treated woods using optimization-algorithm-based BPNN. Forests, 2023, 14 (5): 935.
doi: 10.3390/f14050935
|
12 |
SHEN Q W, ZHANG D M, XIE M S, et al. Multi-strategy enhanced dung beetle optimizer and its application in three-dimensional UAV path planning. Symmetry, 2023, 15 (7): 1432.
doi: 10.3390/sym15071432
|
13 |
TU N W, FAN Z H. IMODBO for optimal dynamic reconfiguration in active distribution networks. Processes, 2023, 11 (6): 1827.
doi: 10.3390/pr11061827
|
14 |
MAO Z Q, XU Y S. Gas emergence prediction based on a combination of improved dung beetle optimizer algorithm and temporal convolutional network[C]//Proceedings of the 4th International Conference on Computer Engineering and Application. Washington D. C., USA: IEEE Press, 2023: 930-935.
|
15 |
XUE J K, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm. Systems Science & Control Engineering, 2020, 8 (1): 22- 34.
doi: 10.1080/21642583.2019.1708830
|
16 |
YAN Y, MA H Z, LI Z D. An improved grasshopper optimization algorithm for global optimization. Chinese Journal of Electronics, 2021, 30 (3): 451- 459.
doi: 10.1049/cje.2021.03.008
|
17 |
TIZHOOSH H R. Opposition-based learning: a new scheme for machine intelligence[C]//Proceedings of International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce. Washington D. C., USA: IEEE Press, 2005: 695-701.
|
18 |
WANG X Y, JIN C Q. Image encryption using game of life permutation and PWLCM chaotic system. Optics Communications, 2012, 285 (4): 412- 417.
doi: 10.1016/j.optcom.2011.10.010
|
19 |
TANYILDIZI E, DEMIR G. Golden sine algorithm: a novel math-inspired algorithm. Advances in Electrical and Computer Engineering, 2017, 17 (2): 71- 78.
doi: 10.4316/AECE.2017.02010
|
20 |
高晨峰, 陈家清, 石默涵. 融合黄金正弦和曲线自适应的多策略麻雀搜索算法. 计算机应用研究, 2022, 39 (2): 491- 499.
doi: 10.19734/j.issn.1001-3695.2021.06.0217
|
|
GAO C F, CHEN J Q, SHI M H. Multi-strategy sparrow search algorithm integrating golden sine and curve adaptive. Application Research of Computers, 2022, 39 (2): 491- 499.
doi: 10.19734/j.issn.1001-3695.2021.06.0217
|
21 |
付接递, 李振东, 郭辉. 基于教与学和逐维柯西变异的鲸鱼优化算法. 计算机工程与科学, 2023, 45 (5): 940- 950.
URL
|
|
FU J D, LI Z D, GUO H. A whale optimization algorithm based on teaching and learning and dimensional Cauchy mutation. Computer Engineering & Science, 2023, 45 (5): 940- 950.
URL
|
22 |
张晓萌, 张艳珠, 刘禄, 等. 融合多策略的改进麻雀搜索算法. 计算机应用研究, 2022, 39 (4): 1086-1091, 1117.
doi: 10.19734/j.issn.1001-3695.2021.09.0412
|
|
ZHANG X M, ZHANG Y Z, LIU L, et al. Improved sparrow search algorithm fused with multiple strategies. Application Research of Computers, 2022, 39 (4): 1086-1091, 1117.
doi: 10.19734/j.issn.1001-3695.2021.09.0412
|
23 |
肖子雅, 刘升. 精英反向黄金正弦鲸鱼算法及其工程优化研究. 电子学报, 2019, 47 (10): 2177- 2186.
doi: 10.3969/j.issn.0372-2112.2019.10.020
|
|
XIAO Z Y, LIU S. Study on elite opposition-based golden-sine whale optimization algorithm and its application of project optimization. Acta Electronica Sinica, 2019, 47 (10): 2177- 2186.
doi: 10.3969/j.issn.0372-2112.2019.10.020
|
24 |
LI S M, CHEN H L, WANG M J, et al. Slime mould algorithm: a new method for stochastic optimization. Future Generation Computer Systems, 2020, 111, 300- 323.
doi: 10.1016/j.future.2020.03.055
|
25 |
潘劲成, 李少波, 周鹏, 等. 改进正弦算法引导的蜣螂优化算法. 计算机工程与应用, 2023, 59 (22): 92- 110.
doi: 10.3778/j.issn.1002-8331.2305-0021
|
|
PAN J C, LI S B, ZHOU P, et al. Dung beetle optimization algorithm guided by improved sine algorithm. Computer Engineering and Applications, 2023, 59 (22): 92- 110.
doi: 10.3778/j.issn.1002-8331.2305-0021
|
26 |
SUN B, LI W, HUANG Y. Performance of composite PPSO on single objective bound constrained numerical optimization problems of CEC 2022[C]//Proceedings of IEEE Congress on Evolutionary Computation. Washington D. C., USA: IEEE Press, 2022: 1-8.
|
27 |
KUMAR A, WU G H, ALI M Z, et al. A test-suite of non-convex constrained optimization problems from the real-world and some baseline results. Swarm and Evolutionary Computation, 2020, 56, 100693.
doi: 10.1016/j.swevo.2020.100693
|