[1] PÖS O, RADVANSZKY J, BUGLYÓ G, et al. DNA copy number variation:main characteristics, evolutionary significance, and pathological aspects[J]. Biomedical Journal, 2021, 44(5):548-559. [2] YANG X, SONG Z, WU C K, et al. Constructing a database for the relations between CNV and human genetic diseases via systematic text mining[J]. BMC Bioinformatics, 2018, 19:125-134. [3] WANG X Z, YU G X, YAN Z M, et al. Lung cancer subtype diagnosis by fusing image-genomics data and hybrid deep networks[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2023, 20(1):512-523. [4] 黄体浩,李俊青,赵海勇.遗传算法优化的BP神经网络拷贝数变异检测[J].计算机工程与应用, 2022, 58(1):274-281. HUANG T H, LI J Q, ZHAO H Y. Copy number variation detection of BP neural network based on genetic algorithm optimized[J]. Computer Engineering and Applications, 2022, 58(1):274-281.(in Chinese) [5] CHEN X, WANG J, YU G, et al. Cooperative driver module identification based on single cell data[J]. Scientia Sinica Informationis, 2023, 53(2):250-265. [6] METZKER M L. Sequencing technologies-the next generation (with notes)[J]. Nature Reviews Genetics, 2009, 11(1):31-46. [7] ABYZOV A, URBAN A E, SNYDER M, et al. CNVnator:an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing[J]. Genome Research, 2011, 21(6):974-984. [8] PRASHANTHI D, SRIHARSHA V, NITA P, et al. iCopyDAV:integrated platform for copy number variations-detection, annotation and visualization[J]. Plos One, 2018, 13(4):1-37. [9] YUAN X G, BAI J, ZHANG J Y, et al. CONDEL:detecting copy number variation and genotyping deletion zygosity from single tumor samples using sequence data[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 17(4):1141-1153. [10] MILLER C A, HAMPTON O, COARFA C, et al. ReadDepth:a parallel R package for detecting copy number alterations from short sequencing reads[J]. Plos One, 2011, 6(1):1-7. [11] CHEN Y, ZHAO L, WANG Y, et al. SeqCNV:a novel method for identification of copy number variations in targeted next-generation sequencing data[J]. BMC Bioinformatics, 2017, 18(1):1-9. [12] YUAN X G, LI J P, BAI J, et al. A local outlier factor-based detection of copy number variations from NGS data[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18(5):1811-1820. [13] YUAN X G, YU J, XI J N, et al. CNV_IFTV:an isolation forest and total variation-based detection of CNVs from short-read sequencing data[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18(2):539-549. [14] 张丽娟,李舟军.微阵列数据癌症分类问题中的基因选择[J].计算机研究与发展, 2009, 46(5):794-802. ZHANG L J, LI Z J. Gene selection for cancer classification in microarray data[J]. Computer Research and Development, 2009, 46(5):794-802.(in Chinese) [15] 钟诚,孙辉.高错误率长序列基因组数据敏感序列识别并行算法[J].通信学报, 2023, 44(2):160-171. ZHONG C, SUN H. A parallel algorithm for identifying sensitive sequences in high error rate long sequence genomic data[J]. Journal of Communications, 2023, 44(2):160-171.(in Chinese) [16] 刘志明,冉昊.云计算下的基因测序数据并行化生成方法[J].计算机仿真, 2022, 39(2):246-250. LIU Z M, RAN H. Parallel generation of gene sequencing data in cloud computing[J]. Computer Simulation, 2022, 39(2):246-250.(in Chinese) [17] KALIA K, GUPTA N. Analysis of hadoop MapReduce scheduling in heterogeneous environment[J]. Ain Shams Engineering Journal, 2021, 12(1):1101-1110. [18] 马生俊,陈旺虎,郭宏乐,等. Hadoop集群中影响应用性能的因素分析[J].小型微型计算机系统, 2018, 39(4):719-724. MA S J, CHEN W H, GUO H L, et al. Analysis of factors affecting application the performance in Hadoop clusters[J]. Journal of Chinese Computer Systems, 2018, 39(4):719-724.(in Chinese) [19] 于建涛,刘圣东,赖灵伟,等.基于Spark的转录组大数据并行处理方法[J].计算机应用研究, 2020(S2):176-180. YU J T, LIU S D, LAI L W, et al. Parallel processing method for transcriptome big data based on spark[J]. Computer Application Research, 2020(S2):176-180.(in Chinese) [20] MENG Z, LI J H, ZHOU Y C, et al. bCloudBLAST:an efficient mapreduce program for bioinformatics applications[C]//Proceedings of the IEEE International Conference on Biomedical Engineering& Informatics. Washington D.C., USA:IEEE Press, 2011:2072-2076. [21] SCHATZ M C. CloudBurst:highly sensitive read mapping with MapReduce[J]. Bioinformatics, 2009, 25(11):1363-1369. [22] YANG H, CHEN G, LIMA L, et al. HadoopCNV:a dynamic programming imputation algorithm to detect copy number variants from sequencing data[EB/OL].[2023-09-27] . https://www.biorxiv.org/content/biorxiv/early/2017/04/05/124339.full.pdf. [23] 王谟瀚,翟俊海,齐家兴.基于MapReduce和Spark的大规模压缩模糊K-近邻算法[J].计算机工程, 2020, 46(11):139-147. WANG M H, ZHAI J H, QI J X. Large-scale condensed fuzzy K-nearest neighbor algorithm based on MapReduce and Spark[J]. Computer Engineering, 2020, 46(11):139-147.(in Chinese) [24] AJAYKUMAR A, YANG J J. Integrative comparison of Burrows-Wheeler Transform-based mapping algorithm with de bruijn graph for identification of lung/liver cancer-specific gene[J]. Journal of Microbiology and Biotechnology, 2022, 32(2):149-159. [25] 张文捷,李大磊. PCR微流控芯片温度控制仿真研究[J].计算机仿真, 2023, 40(3):307-310. ZHANG W J, LI D. Study on temperature control simulation of PCR microfluidic chip[J]. Computer Simulation, 2023, 40(3):307-310.(in Chinese) [26] ASSAL N, LIN M. PCR procedures to amplify GC-rich DNA sequences of Mycobacterium bovis[J]. Journal of Microbiological Methods, 2021, 181:1-7. [27] ZHANG Z, LIU Y, LI G, et al. PocaCNV:a tool to detect copy number variants from population-scale genome sequencing data[C]//Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine. Washington D.C., USA:IEEE Press, 2021:1912-1918. [28] YOON S, XUAN Z, MAKAROV V, et al. Sensitive and accurate detection of copy number variants using read depth of coverage[J]. Genome Research, 2009, 19(9):1586-1592. [29] YUAN X G, ZHANG J Y, YANG L Y. IntSIM:an integrated simulator of next-generation sequencing data[J]. IEEE Transactions on Biomedical Engineering, 2017, 64(2):441-451. [30] GUO Y, WANG S Z, YUAN X G. HBOS-CNV:a new approach to detect copy number variations from next-generation sequencing data[J]. Frontiers in Genetics, 2021, 12:881-891. |