1 |
EL-HAJJ M , FADLALLAH A , CHAMOUN M , et al. A taxonomy of PUF schemes with a novel arbiter-based PUF resisting machine learning attacks. Computer Networks, 2021, 194, 108133.
doi: 10.1016/j.comnet.2021.108133
|
2 |
LIN C C , CHEN M S . Enhancing reliability and security: a configurable poisoning PUF against modeling attacks. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41 (11): 4301- 4312.
doi: 10.1109/TCAD.2022.3197529
|
3 |
ZHANG J L , SHEN C Q . Set-based obfuscation for strong PUFs against machine learning attacks. IEEE Transactions on Circuits and Systems Ⅰ: Regular Papers, 2021, 68 (1): 288- 300.
doi: 10.1109/TCSI.2020.3028508
|
4 |
|
5 |
GAO Y, AL-SARAWI S F, ABBOTT D, et al. Modeling attack resilient reconfigurable latent obfuscation technique for PUF based lightweight authentication[EB/OL]. [2023-11-04]. https://arxiv.org/abs/1706.06232.
|
6 |
GASSEND B , LIM D , CLARKE D , et al. Identification and authentication of integrated circuits. Concurrency and Computation: Practice and Experience, 2004, 16 (11): 1077- 1098.
doi: 10.1002/cpe.805
|
7 |
KUMAR S, NIAMAT M. Machine learning based modeling attacks on a configurable PUF[C]//Proceedings of the 2018 IEEE National Aerospace and Electronics Conference. Washington D.C., USA: IEEE Press, 2018: 169-173.
|
8 |
SUH G E, DEVADAS S. Physical unclonable functions for device authentication and secret key generation[C]//Proceedings of the 44th ACM/IEEE Design Automation Conference. Washington D.C., USA: IEEE Press, 2007: 9-14.
|
9 |
SAHOO D P , MUKHOPADHYAY D , CHAKRABORTY R S , et al. A multiplexer-based arbiter PUF composition with enhanced reliability and security. IEEE Transactions on Computers, 2018, 67 (3): 403- 417.
doi: 10.1109/TC.2017.2749226
|
10 |
FARD S S , KAVEH M , MOSAVI M R , et al. An efficient modeling attack for breaking the security of XOR-arbiter PUFs by using the fully connected and long-short term memory. Microprocessors and Microsystems, 2022, 94, 104667.
doi: 10.1016/j.micpro.2022.104667
|
11 |
YE J, HU Y, LI X W. RPUF: physical unclonable function with randomized challenge to resist modeling attack[C]//Proceedings of the IEEE Asian Hardware-Oriented Security and Trust (AsianHOST). Washington D.C., USA: IEEE Press, 2016: 1-6.
|
12 |
MAJZOOBI M, ROSTAMI M, KOUSHANFAR F, et al. Slender PUF protocol: a lightweight, robust, and secure authentication by substring matching[C]//Proceedings of the IEEE Symposium on Security and Privacy Workshops. Washington D.C., USA: IEEE Press, 2012: 33-44.
|
13 |
HOU S , LI J L , LIU H L , et al. Design of lightweight and configurable strong physical unclonable function. Journal of Computer-Aided Design & Computer Graphics, 2021, 33 (10): 1627- 1634.
|
14 |
WANG S J , CHEN Y S , LI K S M . Modeling attack resistant PUFs based on adversarial attack against machine learning. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2021, 11 (2): 306- 318.
doi: 10.1109/JETCAS.2021.3062413
|
15 |
张笑天, 汪鹏君, 张跃军, 等. 基于动态亚阈值的延迟型PUF电路设计. 华东理工大学学报(自然科学版), 2022, 48 (2): 237- 243.
|
|
ZHANG X T , WANG P J , ZHANG Y J , et al. Design of delayed PUF circuit based on dynamic subthreshold. Journal of East China University of Science and Technology(Natural Science Edition), 2022, 48 (2): 237- 243.
|
16 |
王振宇, 郭阳, 李少青, 等. 面向轻量级物联网设备的高效匿名身份认证协议设计. 通信学报, 2022, 43 (7): 49- 61.
|
|
WANG Z Y , GUO Y , LI S Q , et al. Design of efficient anonymous identity authentication protocol for lightweight IoT devices. Journal on Communications, 2022, 43 (7): 49- 61.
|
17 |
SHI J Y , LU Y , ZHANG J L . Approximation attacks on strong PUFs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39 (10): 2138- 2151.
doi: 10.1109/TCAD.2019.2962115
|
18 |
|
19 |
LIM D , LEE J W , GASSEND B , et al. Extracting secret keys from integrated circuits. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2005, 13 (10): 1200- 1205.
doi: 10.1109/TVLSI.2005.859470
|
20 |
徐金甫, 吴缙, 李军伟, 等. 基于敏感度混淆机制的控制型物理不可克隆函数研究. 电子与信息学报, 2019, 41 (7): 1601- 1609.
|
|
XU J F , WU J , LI J W , et al. Controlled physical unclonable function research based on sensitivity confusion mechanism. Journal of Electronics & Information Technology, 2019, 41 (7): 1601- 1609.
|
21 |
YE J, HU Y, LI X W. POSTER: attack on non-linear physical unclonable function[C]//Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. New York, USA: ACM Press, 2016: 1751-1753.
|
22 |
潘畲稣, 张继军, 张钊锋. 基于SRAM PUF稳定性处理的RFID标签密钥生成方案. 计算机工程, 2020, 46 (9): 149-153, 162.
doi: 10.19678/j.issn.1000-3428.0055974
|
|
PAN S S , ZHANG J J , ZHANG Z F . Key generation scheme for RFID tag based on SRAM PUF stability processing. Computer Engineering, 2020, 46 (9): 149-153, 162.
doi: 10.19678/j.issn.1000-3428.0055974
|
23 |
KHALAFALLA M, ELMOHR M A, GEBOTYS C. Going deep: using deep learning techniques with simplified mathematical models against XOR BR and TBR PUFs (attacks and countermeasures)[C]//Proceedings of the IEEE International Symposium on Hardware Oriented Security and Trust (HOST). Washington D.C., USA: IEEE Press, 2020: 80-90.
|
24 |
ALI-POUR A, HELY D, BEROULLE V, et al. Sub-space modeling: an enrollment solution for XOR arbiter PUF using machine learning[C]//Proceedings of the 23rd International Symposium on Quality Electronic Design (ISQED). Washington D.C., USA: IEEE Press, 2022: 1-9.
|
25 |
SPENKE A , BREITHAUPT R , PLAGA R . An arbiter PUF secured by remote random reconfigurations of an FPGA. Berlin, Germany: Springer, 2016.
|
26 |
张紫楠, 刘威, 郭渊博. 物理不可克隆函数综述. 计算机应用, 2012, 32 (11): 3115- 3120.
|
|
ZHANG Z N , LIU W , GUO Y B . Survey of physical unclonable function. Journal of Computer Applications, 2012, 32 (11): 3115- 3120.
|
27 |
ZHOU Z Y , LI G , WANG P J . A challenge-screening strategy for enhancing the stability of strong PUF based on machine learning. Microelectronics Journal, 2023, 131, 105667.
|
28 |
GAO Y S , MA H , AL-SARAWI S F , et al. PUF-FSM: a controlled strong PUF. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 37 (5): 1104- 1108.
|