1 |
马勇, 王雯琦, 严新平. 面向新一代航运系统的船舶智能航行技术研究进展. 中国科学(技术科学), 2023, 53(11): 1795- 1806.
|
|
MA Y, WANG W Q, YAN X P. Research progress of vessel intelligent navigation technology for the new generation of waterborne transportation system. Scientia Sinica (Technologica), 2023, 53(11): 1795- 1806.
|
2 |
马勇, 王雯琦, 严新平. 水域无人系统平台自主航行及协同控制研究进展. 无人系统技术, 2022, 5(1): 1- 16.
|
|
MA Y, WANG W Q, YAN X P. Research progress on autonomous navigation and cooperative control of water area unmanned system platform. Unmanned Systems Technology, 2022, 5(1): 1- 16.
|
3 |
王远渊, 刘佳仑, 马枫, 等. 智能船舶远程驾驶控制技术研究现状与趋势. 中国舰船研究, 2021, 16(1): 18- 31.
|
|
WANG Y Y, LIU J L, MA F, et al. Review and prospect of remote control intelligent ships. Chinese Journal of Ship Research, 2021, 16(1): 18- 31.
|
4 |
严新平, 张笛, 袁成清, 等. 水路交通控制的研究现状与发展趋势. 水上安全, 2022,(4): 34- 43.
|
|
YAN X P, ZHANG D, YUAN C Q, et al. Research status and development tendency of waterway traffic control. Maritime Safety, 2022,(4): 34- 43.
|
5 |
WEI T, FENG W, CHEN Y F, et al. Hybrid satellite-terrestrial communication networks for the maritime Internet of Things: key technologies, opportunities, and challenges. IEEE Internet of Things Journal, 2021, 8(11): 8910- 8934.
doi: 10.1109/JIOT.2021.3056091
|
6 |
LOPES R R F, BALARAJU P H, RETTORE P H L, et al. Queuing over ever-changing communication scenarios in tactical networks. IEEE Transactions on Mobile Computing, 2022, 21(1): 291- 305.
doi: 10.1109/TMC.2020.3005737
|
7 |
WANG C, YUAN B, SHI W X, et al. Low-profile broadband plasma antenna for naval communications in VHF and UHF bands. IEEE Transactions on Antennas and Propagation, 2020, 68(6): 4271- 4282.
doi: 10.1109/TAP.2020.2972397
|
8 |
LÁZARO F, RAULEFS R, WANG W, et al. VHF Data Exchange System (VDES): an enabling technology for maritime communications. CEAS Space Journal, 2019, 11(1): 55- 63.
doi: 10.1007/s12567-018-0214-8
|
9 |
UYSAL E, KAYA O, EPHREMIDES A, et al. Semantic communications in networked systems: a data significance perspective. IEEE Network, 2022, 36(4): 233- 240.
doi: 10.1109/MNET.106.2100636
|
10 |
严新平, 刘佳仑, 范爱龙, 等. 智能船舶技术发展与趋势简述. 船舶工程, 2020, 42(3): 15- 20.
|
|
YAN X P, LIU J L, FAN A L, et al. Brief introduction to the development and trend of intelligent ship technology. Ship Engineering, 2020, 42(3): 15- 20.
|
11 |
GUAN S H, WANG J J, JIANG C X, et al. MagicNet: the maritime giant cellular network. IEEE Communications Magazine, 2021, 59(3): 117- 123.
doi: 10.1109/MCOM.001.2000831
|
12 |
ASLAM S, MICHAELIDES M P, HERODOTOU H. Internet of ships: a survey on architectures, emerging applications, and challenges. IEEE Internet of Things Journal, 2020, 7(10): 9714- 9727.
doi: 10.1109/JIOT.2020.2993411
|
13 |
CAI Y, WU S H, LUO J P, et al. Age-oriented access control in GEO/LEO heterogeneous network for marine IoRT: a deep reinforcement learning approach. IEEE Internet of Things Journal, 2022, 9(24): 24919- 24932.
doi: 10.1109/JIOT.2022.3194927
|
14 |
ULLAH M A, YASTREBOVA A, MIKHAYLOV K, et al. Situational awareness for autonomous ships in the Arctic: mMTC direct-to-satellite connectivity. IEEE Communications Magazine, 2022, 60(6): 32- 38.
doi: 10.1109/MCOM.001.2100810
|
15 |
佟兴, 张召, 金澈清, 等. 面向端边云协同架构的区块链技术综述. 计算机学报, 2021, 44(12): 2345- 2366.
doi: 10.11897/SP.J.1016.2021.02345
|
|
TONG X, ZHANG Z, JIN C Q, et al. Blockchain for end-edge-cloud architecture: a survey. Chinese Journal of Computers, 2021, 44(12): 2345- 2366.
doi: 10.11897/SP.J.1016.2021.02345
|
16 |
PENG K, HUANG H L, ZHAO B H, et al. Intelligent computation offloading and resource allocation in IIoT with end-edge-cloud computing using NSGA-Ⅲ. IEEE Transactions on Network Science and Engineering, 2023, 10(5): 3032- 3046.
doi: 10.1109/TNSE.2022.3155490
|
17 |
LIU G Z, DAI F, XU X L, et al. An adaptive DNN inference acceleration framework with end-edge-cloud collaborative computing. Future Generation Computer Systems, 2023, 140, 422- 435.
doi: 10.1016/j.future.2022.10.033
|
18 |
LIAO Y Z, LIU J Y, CHEN X Y, et al. Energy minimization of inland waterway USVs for IRS-assisted hybrid UAV-terrestrial MEC network. IEEE Transactions on Vehicular Technology, 2024, 73(3): 4121- 4135.
doi: 10.1109/TVT.2023.3323659
|
19 |
LI X L, FENG W, CHEN Y F, et al. Maritime coverage enhancement using UAVs coordinated with hybrid satellite-terrestrial networks. IEEE Transactions on Communications, 2020, 68(4): 2355- 2369.
doi: 10.1109/TCOMM.2020.2966715
|
20 |
LI X L, FENG W, WANG J, et al. Enabling 5G on the ocean: a hybrid satellite-UAV-terrestrial network solution. IEEE Wireless Communications, 2020, 27(6): 116- 121.
doi: 10.1109/MWC.001.2000076
|
21 |
LIU Y, YAN J J, ZHAO X H. Deep reinforcement learning based latency minimization for mobile edge computing with virtualization in maritime UAV communication network. IEEE Transactions on Vehicular Technology, 2022, 71(4): 4225- 4236.
doi: 10.1109/TVT.2022.3141799
|
22 |
KOURANI A, DAHER N. Marine locomotion: a tethered UAV-Buoy system with surge velocity control. Robotics and Autonomous Systems, 2021, 145, 103858.
doi: 10.1016/j.robot.2021.103858
|
23 |
WU Q Q, ZHANG S W, ZHENG B X, et al. Intelligent reflecting surface-aided wireless communications: a tutorial. IEEE Transactions on Communications, 2021, 69(5): 3313- 3351.
doi: 10.1109/TCOMM.2021.3051897
|
24 |
PAN C H, REN H, WANG K Z, et al. Multicell MIMO communications relying on intelligent reflecting surfaces. IEEE Transactions on Wireless Communications, 2020, 19(8): 5218- 5233.
doi: 10.1109/TWC.2020.2990766
|
25 |
AI Q S, QIAO X H, LIAO Y Z, et al. Joint optimization of USVs communication and computation resource in IRS-aided wireless inland ship MEC networks. IEEE Transactions on Green Communications and Networking, 2022, 6(2): 1023- 1036.
doi: 10.1109/TGCN.2021.3135530
|
26 |
ZHENG B X, LIN S E, ZHANG R. Intelligent reflecting surface-aided LEO satellite communication: cooperative passive beamforming and distributed channel estimation. IEEE Journal on Selected Areas in Communications, 2022, 40(10): 3057- 3070.
doi: 10.1109/JSAC.2022.3196119
|
27 |
LÜ J B, ZHANG R. Hybrid active/passive wireless network aided by intelligent reflecting surface: system modeling and performance analysis. IEEE Transactions on Wireless Communications, 2021, 20(11): 7196- 7212.
doi: 10.1109/TWC.2021.3081447
|
28 |
LIANG M H, WENG L X, GAO R B, et al. Unsupervised maritime anomaly detection for intelligent situational awareness using AIS data. Knowledge-Based Systems, 2024, 284, 111313.
doi: 10.1016/j.knosys.2023.111313
|
29 |
ZHAO J S, CHEN Y J, ZHOU Z Z, et al. Multiship speed measurement method based on machine vision and drone images. IEEE Transactions on Instrumentation and Measurement, 2023, 72, 2513112.
|
30 |
SHI S S, WANG X G, LI H S. PointRCNN: 3D object proposal generation and detection from point cloud[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2019: 770-779.
|
31 |
LIN J Y, DIEKMANN P, FRAMING C E, et al. Maritime environment perception based on deep learning. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 15487- 15497.
doi: 10.1109/TITS.2022.3140933
|
32 |
WANG C L, LI G Y, HAN P H, et al. Impacts of COVID-19 on ship behaviours in port area: an AIS data-based pattern recognition approach. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 25127- 25138.
doi: 10.1109/TITS.2022.3147377
|
33 |
CHEN J, CHEN H, CHEN Q, et al. Vessel sailing route extraction and analysis from satellite-based AIS data using density clustering and probability algorithms. Ocean Engineering, 2023, 280, 114627.
doi: 10.1016/j.oceaneng.2023.114627
|
34 |
LUO Q Y, HU S H, LI C L, et al. Resource scheduling in edge computing: a survey. IEEE Communications Surveys & Tutorials, 2021, 23(4): 2131- 2165.
|
35 |
YANG T T, GAO S, LI J B, et al. Multi-armed bandits learning for task offloading in maritime edge intelligence networks. IEEE Transactions on Vehicular Technology, 2022, 71(4): 4212- 4224.
doi: 10.1109/TVT.2022.3141740
|
36 |
LIAO Y Z, CHEN X Y, XIA S, et al. Energy minimization for UAV swarm-enabled wireless inland ship MEC network with time windows. IEEE Transactions on Green Communications and Networking, 2023, 7(2): 594- 608.
doi: 10.1109/TGCN.2022.3213801
|
37 |
DAI M H, HUANG N, WU Y, et al. Latency minimization oriented hybrid offshore and aerial-based multi-access computation offloading for marine communication networks. IEEE Transactions on Communications, 2023, 71(11): 6482- 6498.
doi: 10.1109/TCOMM.2023.3306581
|
38 |
邝祝芳, 陈清林, 李林峰, 等. 基于深度强化学习的多用户边缘计算任务卸载调度与资源分配算法. 计算机学报, 2022, 45(4): 812- 824.
|
|
KUANG Z F, CHEN Q L, LI L F, et al. Multi-user edge computing task offloading scheduling and resource allocation based on deep reinforcement learning. Chinese Journal of Computers, 2022, 45(4): 812- 824.
|
39 |
LI X M, WAN J F, DAI H N, et al. A hybrid computing solution and resource scheduling strategy for edge computing in smart manufacturing. IEEE Transactions on Industrial Informatics, 2019, 15(7): 4225- 4234.
doi: 10.1109/TII.2019.2899679
|
40 |
WANG P F, YAO C, ZHENG Z J, et al. Joint task assignment, transmission, and computing resource allocation in multilayer mobile edge computing systems. IEEE Internet of Things Journal, 2019, 6(2): 2872- 2884.
doi: 10.1109/JIOT.2018.2876198
|
41 |
SEAH W K G, LEE C H, LIN Y D, et al. Combined communication and computing resource scheduling in sliced 5G multi-access edge computing systems. IEEE Transactions on Vehicular Technology, 2022, 71(3): 3144- 3154.
doi: 10.1109/TVT.2021.3139026
|
42 |
LI H, OTA K, DONG M X. Learning IoT in edge: deep learning for the Internet of Things with edge computing. IEEE Network, 2018, 32(1): 96- 101.
doi: 10.1109/MNET.2018.1700202
|
43 |
NDIKUMANA A, TRAN N H, KIM D H, et al. Deep learning based caching for self-driving cars in multi-access edge computing. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(5): 2862- 2877.
doi: 10.1109/TITS.2020.2976572
|
44 |
SHAKARAMI A, SHAHIDINEJAD A, GHOBAEI-ARANI M. An autonomous computation offloading strategy in mobile edge computing: a deep learning-based hybrid approach. Journal of Network and Computer Applications, 2021, 178, 102974.
doi: 10.1016/j.jnca.2021.102974
|
45 |
KHAYYAT M, ELGENDY I A, MUTHANNA A, et al. Advanced deep learning-based computational offloading for multilevel vehicular edge-cloud computing networks. IEEE Access, 2020, 8, 137052- 137062.
doi: 10.1109/ACCESS.2020.3011705
|
46 |
WANG X F, HAN Y W, LEUNG V C M, et al. Convergence of edge computing and deep learning: a comprehensive survey. IEEE Communications Surveys & Tutorials, 2020, 22(2): 869- 904.
|
47 |
|
48 |
CAO X Y, HU X L, PENG M G. Joint mode selection and beamforming for IRS-aided maritime cooperative communication systems. IEEE Transactions on Green Communications and Networking, 2023, 7(1): 57- 69.
doi: 10.1109/TGCN.2022.3202915
|
49 |
JIAO S Y, FANG F, ZHOU X T, et al. Joint beamforming and phase shift design in downlink UAV networks with IRS-assisted NOMA. Journal of Communications and Information Networks, 2020, 5(2): 138- 149.
doi: 10.23919/JCIN.2020.9130430
|
50 |
YANG F, WANG J B, ZHANG H, et al. Multi-IRS-assisted mmWave MIMO communication using twin-timescale channel state information. IEEE Transactions on Communications, 2022, 70(9): 6370- 6384.
doi: 10.1109/TCOMM.2022.3189398
|
51 |
ASIM M, ELAFFENDI M, EL-LATIF A A A. Multi-IRS and multi-UAV-assisted MEC system for 5G/6G networks: efficient joint trajectory optimization and passive beamforming framework. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(4): 4553- 4564.
doi: 10.1109/TITS.2022.3178896
|
52 |
中国航海学会. 船舶智能航行航海保障数据标准: T/CIN 023—2023[S]. 北京: 中国航海学会, 2023: 1.
|
|
China Institute of Navigation. Data standard of navigation service for intelligent navigation of ships: T/CIN 023—2023[S]. Beijing: China Institute of Navigation, 2023: 1. (in Chinese)
|
53 |
|
54 |
郑树剑, 华先亮, 高阳, 等. 船载网络数据订阅式通信协议设计. 船舶设计通讯, 2019,(2): 21- 26.
|
|
ZHENG S J, HUA X L, GAO Y, et al. Design of data subscription communication protocol for shipborne network. Journal of Ship Design, 2019,(2): 21- 26.
|
55 |
交通运输航测标准化技术委员会. 自动识别系统(AIS)中国区域二进制信息技术规范: JT/T 1276—2019 [S]. 北京: 交通运输航测标准化技术委员会, 2019.
|
|
Technical Committee for the Standardization of Transport Aerial Surveying. Automatic Identification System (AIS) China regional binary information technology specification: JT/T 1276—2019 [S]. Beijing: Technical Committee for the Standardization of Transport Aerial Surveying, 2019. (in Chinese)
|
56 |
中国国家标准化管理委员会. 海上导航和无线电通信设备及系统数字接口第450部分: 多发话器和多受话器以太网连接: GB/T 31843.450—2019[S]. 上海: 全国船舶电气及电子设备标准化技术委员会, 2019.
|
|
Standardization Administration of the P. R. C. Maritime navigation and radio communication equipment and systems—digital interfaces—part 450: multiple talkers and multiple listeners—Ethernet interconnection: GB/T 31843.450—2019[S]. Shanghai: Electrical and Electronic Installations in Ships, 2019. (in Chinese)
|
57 |
韩一, 陈智旻, 洪启田, 等. 环境监测数据的传输方法和终端: CN201810179071.0[P]. [2024-04-17].
|
|
HAN Y, CHEN Z M, HONG Q T, et al. Transmission method and terminal of environmental monitoring data: CN201810179071.0 [P]. [2024-04-17]. (in Chinese)
|
58 |
王宝, 田为民, 岳博文, 等. 智能航运背景下航保船岸协同信息交互数字化与标准化途径的研究. 数字通信世界, 2021,(5): 28- 30.
|
|
WANG B, TIAN W M, YUE B W, et al. Research on digitalization and standardization ways of ship-shore collaborative information interaction under the background of intelligent navigation. Digital Communication World, 2021,(5): 28- 30.
|
59 |
张宝晨, 张英俊, 王绪明, 等. 基于船岸协同的船舶智能航行与控制关键技术研究. 中国基础科学, 2021, 23(2): 44- 51.
|
|
ZHANG B C, ZHANG Y J, WANG X M, et al. Key technologies of ship intelligent navigation and control based on ship-shore cooperation. China Basic Science, 2021, 23(2): 44- 51.
|
60 |
张宝晨, 于巧婵, 徐加庆, 等. 浅析船舶智能航行驾驶模式与对外信息交互协同. 中国航海, 2021, 44(4): 125- 129.
|
|
ZHANG B C, YU Q C, XU J Q, et al. Analysis of ship autonomous navigation mode and external information interaction. Navigation of China, 2021, 44(4): 125- 129.
|
61 |
TAN L, YU K P, LIN L, et al. Speech emotion recognition enhanced traffic efficiency solution for autonomous vehicles in a 5G-enabled space-air-ground integrated intelligent transportation system. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(3): 2830- 2842.
doi: 10.1109/TITS.2021.3119921
|
62 |
TONG W, DONG X W, ZHANG Y S, et al. TI-BIoV: traffic information interaction for blockchain-based IoV with trust and incentive. IEEE Internet of Things Journal, 2023, 10(24): 21528- 21543.
doi: 10.1109/JIOT.2023.3300840
|
63 |
宁滨. 智能交通中的若干科学和技术问题. 中国科学: 信息科学, 2018, 48(9): 1264- 1269.
|
|
NING B. A number of scientific and technical problems in intelligent transportation. Scientia Sinica (Informationis), 2018, 48(9): 1264- 1269.
|
64 |
王维刚. 基于图像识别的船舶智能航行环境融合感知算法研究[D]. 武汉: 武汉理工大学, 2020.
|
|
WANG W G. Research on fusion perception algorithm of ship intelligent navigation environment based on image recognition[D]. Wuhan: Wuhan University of Technology, 2020. (in Chinese)
|
65 |
郎舒妍, 曾晓光, 张民. 智能船舶工程科技发展战略研究. 中国工程科学, 2019, 21(6): 27- 32.
|
|
LANG S Y, ZENG X G, ZHANG M. Development strategy of intelligent ship engineering technology. Strategic Study of CAE, 2019, 21(6): 27- 32.
|
66 |
柳晨光, 初秀民, 谢朔, 等. 船舶智能化研究现状与展望. 船舶工程, 2016, 38(3): 77-84, 92.
|
|
LIU C G, CHU X M, XIE S, et al. Review and prospect of ship intelligence. Ship Engineering, 2016, 38(3): 77-84, 92.
|
67 |
GAO D W, ZHU Y S, ZHANG J F, et al. A novel MP-LSTM method for ship trajectory prediction based on AIS data. Ocean Engineering, 2021, 228, 108956.
|
68 |
甄荣, 邵哲平, 潘家财. 基于AIS数据的船舶行为特征挖掘与预测: 研究进展与展望. 地球信息科学学报, 2021, 23(12): 2111- 2127.
|
|
ZHEN R, SHAO Z P, PAN J C. Advance in character mining and prediction of ship behavior based on AIS data. Journal of Geo-Information Science, 2021, 23(12): 2111- 2127.
|
69 |
BALTRUŠAITIS T, AHUJA C, MORENCY L P. Multimodal machine learning: a survey and taxonomy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(2): 423- 443.
|
70 |
何俊, 张彩庆, 李小珍, 等. 面向深度学习的多模态融合技术研究综述. 计算机工程, 2020, 46(5): 1- 11.
doi: 10.19678/j.issn.1000-3428.0057370
|
|
HE J, ZHANG C Q, LI X Z, et al. Survey of research on multimodal fusion technology for deep learning. Computer Engineering, 2020, 46(5): 1- 11.
doi: 10.19678/j.issn.1000-3428.0057370
|
71 |
YUAN Z, LIU J X, LIU Y, et al. A multi-task analysis and modelling paradigm using LSTM for multi-source monitoring data of inland vessels. Ocean Engineering, 2020, 213, 107604.
|
72 |
FARAHNAKIAN F, HEIKKONEN J. Deep learning based multi-modal fusion architectures for maritime vessel detection. Remote Sensing, 2020, 12(16): 2509.
|
73 |
OFLI F, ALAM F, IMRAN M. Analysis of social media data using multimodal deep learning for disaster response[EB/OL]. [2024-04-17]. http://arxiv.org/abs/2004.11838.
|
74 |
DIJT P, METTES P. Trajectory prediction network for future anticipation of ships[C]//Proceedings of the Proceedings of the 2020 International Conference on Multimedia Retrieval. New York, USA: ACM Press, 2020: 73-81.
|
75 |
MA R X, YIN Y, CHEN J, et al. Multi-modal information fusion for LiDAR-based 3D object detection framework. Multimedia Tools and Applications, 2024, 83(3): 7995- 8012.
|
76 |
QU J X, LIU R W, GUO Y, et al. Improving maritime traffic surveillance in inland waterways using the robust fusion of AIS and visual data. Ocean Engineering, 2023, 275, 114198.
|
77 |
GUO Y, LIU R W, QU J X, et al. Asynchronous trajectory matching-based multimodal maritime data fusion for vessel traffic surveillance in inland waterways. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(11): 12779- 12792.
|
78 |
CHEN H, YOKOYA N, WU C, et al. Unsupervised multimodal change detection based on structural relationship graph representation learning. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 5635318.
|
79 |
XIONG W, XIONG Z Y, XU P L, et al. Learning to disentangle and fuse for fine-grained multi-modality ship image retrieval. Engineering Applications of Artificial Intelligence, 2024, 133, 108150.
|
80 |
GEORGIEV P, GARBATOV Y. Multipurpose vessel fleet for short black sea shipping through multimodal transport corridors. Brodogradnja, 2021, 72(4): 79- 101.
|
81 |
SUN Y L, LEI L, LIU L, et al. Structural regression fusion for unsupervised multimodal change detection. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 4504018.
|
82 |
|
83 |
黄勃, 吴申奥, 王文广, 等. 图模互补: 知识图谱与大模型融合综述. 武汉大学学报(理学版), 2024, 70(4): 397- 412.
|
|
HUANG B, WU S A, WANG W G, et al. KG-LLM-MCom: a survey on integration of knowledge graph and large language model. Journal of Wuhan University(Natural Science Edition), 2024, 70(4): 397- 412.
|
84 |
ZHANG Y T, XU R Q, LU W P, et al. Multi-modal spatio-temporal knowledge graph of ship management. Applied Sciences, 2023, 13(16): 9393.
|
85 |
LIU X J, ZHANG Y J, ZOU H M, et al. Multi-source knowledge graph reasoning for ocean oil spill detection from satellite SAR images. International Journal of Applied Earth Observation and Geoinformation, 2023, 116, 103153.
|
86 |
GAN L X, YE B Y, HUANG Z Q, et al. Knowledge graph construction based on ship collision accident reports to improve maritime traffic safety. Ocean and Coastal Management, 2023, 240, 106660.
|
87 |
刘建湘. 船舶活动知识图谱构建与可视分析方法研究[D]. 郑州: 战略支援部队信息工程大学, 2022.
|
|
LIU J X. Research on the construction of knowledge map of ship activities and visual analysis method[D]. Zhengzhou: Information Engineering University, 2022. (in Chinese)
|
88 |
ZHANG C, YANG Z C, HE X D, et al. Multimodal intelligence: representation learning, information fusion, and applications. IEEE Journal of Selected Topics in Signal Processing, 2020, 14(3): 478- 493.
|
89 |
任泽裕, 王振超, 柯尊旺, 等. 多模态数据融合综述. 计算机工程与应用, 2021, 57(18): 49.
|
|
REN Z Y, WANG Z C, KE Z W, et al. Survey of multimodal data fusion. Computer Engineering and Applications, 2021, 57(18): 49.
|
90 |
刘峰, 沈同圣, 郭少军, 等. 基于特征级融合的多波段舰船目标识别方法. 光谱学与光谱分析, 2017, 37(6): 1934- 1940.
|
|
LIU F, SHEN T S, GUO S J, et al. Multi-spectral ship target recognition based on feature level fusion. Spectroscopy and Spectral Analysis, 2017, 37(6): 1934- 1940.
|
91 |
BORKOWSKI P. The ship movement trajectory prediction algorithm using navigational data fusion. Sensors, 2017, 17(6): 1432.
|
92 |
OUYANG Z L, ZOU Z J, ZOU L. Adaptive hybrid-kernel function based Gaussian process regression for nonparametric modeling of ship maneuvering motion. Ocean Engineering, 2023, 268, 113373.
|
93 |
GUO M Z, GUO C, ZHANG C, et al. Fusion of ship perceptual information for electronic navigational chart and radar images based on deep learning. Journal of Navigation, 2020, 73(1): 192- 211.
|
94 |
LIU J M, CHEN H, WANG Y. Multi-source remote sensing image fusion for ship target detection and recognition. Remote Sensing, 2021, 13(23): 4852.
|
95 |
XIONG W, XIONG Z Y, CUI Y Q, et al. An interpretable fusion Siamese network for multi-modality remote sensing ship image retrieval. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(6): 2696- 2712.
|
96 |
LIANG M H, ZHAN Y, LIU R W. MVFFNet: multi-view feature fusion network for imbalanced ship classification. Pattern Recognition Letters, 2021, 151, 26- 32.
|
97 |
XIAO Y, LI X C, YIN J J, et al. Adaptive multi-source data fusion vessel trajectory prediction model for intelligent maritime traffic. Knowledge-Based Systems, 2023, 277, 110799.
|
98 |
JING M, TANG Y C. A new base basic probability assignment approach for conflict data fusion in the evidence theory. Applied Intelligence, 2021, 51(2): 1056- 1068.
|
99 |
DU Y Q, CHEN Y Y, LI X H, et al. Data fusion and machine learning for ship fuel efficiency modeling: part Ⅱ—voyage report data, AIS data and meteorological data. Communications in Transportation Research, 2022, 2, 100073.
|
100 |
LI X H, DU Y Q, CHEN Y Y, et al. Data fusion and machine learning for ship fuel efficiency modeling: part Ⅰ—voyage report data and meteorological data. Communications in Transportation Research, 2022, 2, 100074.
|
101 |
RAMACHANDRAM D, TAYLOR G W. Deep multimodal learning: a survey on recent advances and trends. IEEE Signal Processing Magazine, 2017, 34(6): 96- 108.
|
102 |
PANDEYA Y R, LEE J. Deep learning-based late fusion of multimodal information for emotion classification of music video. Multimedia Tools and Applications, 2021, 80(2): 2887- 2905.
|
103 |
LANG H T, WU S W. Ship classification in moderate-resolution SAR image by naive geometric features-combined multiple kernel learning. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10): 1765- 1769.
|
104 |
XIONG W T, VAN GELDER P H A J M, YANG K W. A decision support method for design and operationalization of search and rescue in maritime emergency. Ocean Engineering, 2020, 207, 107399.
|
105 |
GUO S Y, ZHANG X G, DU Y Q, et al. Path planning of coastal ships based on optimized DQN reward function. Journal of Marine Science and Engineering, 2021, 9(2): 210.
|
106 |
LIU D Q, ZHANG J, JIN J C, et al. A new approach of obstacle fusion detection for unmanned surface vehicle using Dempster-Shafer evidence theory. Applied Ocean Research, 2022, 119, 103016.
|
107 |
WANG S B, ZHANG Y J, LI L B. A collision avoidance decision-making system for autonomous ship based on modified velocity obstacle method. Ocean Engineering, 2020, 215, 107910.
URL
|
108 |
WU Y, CHU X M, DENG L, et al. A new multi-sensor fusion approach for integrated ship motion perception in inland waterways. Measurement, 2022, 200, 111630.
|
109 |
LIU R W, GUO Y, NIE J T, et al. Intelligent edge-enabled efficient multi-source data fusion for autonomous surface vehicles in maritime Internet of Things. IEEE Transactions on Green Communications and Networking, 2022, 6(3): 1574- 1587.
|
110 |
HUANG Z S, HU Q Y, MEI Q, et al. Identity recognition on waterways: a novel ship information tracking method based on multimodal data. Journal of Navigation, 2021, 74(6): 1336- 1352.
|
111 |
YUAN Z, LIU J X, ZHANG Q, et al. Prediction and optimisation of fuel consumption for inland ships considering real-time status and environmental factors. Ocean Engineering, 2021, 221, 108530.
|
112 |
YAN R, WANG S A, DU Y Q. Development of a two-stage ship fuel consumption prediction and reduction model for a dry bulk ship. Transportation Research Part E: Logistics and Transportation Review, 2020, 138, 101930.
|
113 |
屠海洋, 屠关海, 曹昌魁. 船舶节能航速辅助决策系统. 中国航海, 2017, 40(2): 125-128, 134.
|
|
TU H Y, TU G H, CAO C K. Ship speed decision support system for energy saving. Navigation of China, 2017, 40(2): 125-128, 134.
|