[1] Bedi G, Venayagamoorthy G K, Singh R, et al. Review of Internet of
Things (IoT) in electric power and energy systems[J]. IEEE Internet of
Things Journal, 2018,5(2): 847-870.
[2] Wang H C, Wang J L, Ding G R, et al. Robust spectrum sharing in
air-ground integrated networks: Opportunities and challenges[J]. IEEE
Wireless Communications, 2020, 27(3): 148-155.
[3] SAHOO B P S, PUTHAL D, SHARMA P K. Toward advanced UAV
communications: Properties, research challenges, and future potential[J].
IEEE Internet of Things Magazine, 2022, 5(1): 154-159.
[4] Li Z D, Wang, Y, Liu M, et al. Energy efficient resource allocation for
UAV-Assisted Space-Air-Ground Internet of remote things networks[J].
IEEE Access, 2019, 7:145348–14536.
[5] Ai B, Molisch A F, Rupp M, et al. 5G key technologies for smart
railways[J].Proceedings of the IEEE, 2020, 108(6):856-893.
[6] Jia Z Y, Sheng M, Li J D, et al. LEO Satellite-Assisted UAV: joint
trajectory and data collection for internet of remote things in 6G aerial
access networks[J].IEEE Internet of Things Journal, 2020,
8(12):9814–9826.
[7] 刘亮,毛武平,李汶蔚等. 空天地一体化边缘计算网络中基于博弈论的
任 务 卸 载 策 略 [J/OL]. 计 算 机 工 程 ,2024,1-11.
DOI:10.19678/j.issn.1000-3428.0069161
Liu L,Mao W P, Li W W, et al. Task Offloading Strategy Based on Game
Theory in the Space-Air-Ground Integrated Edge Computing
Networks[J/OL]. Computer Engineering.2024,1-11.
DOI:10.19678/j.issn.1000-3428.0069161
[8] Tang Q Q, Li B. Overview of mobile edge computing in space-air-ground
integrated network[J]. Radio Communications Technology, 2021, 47(1):
25–35. doi: 10. 3969/j.issn.1003-3114.2021.01.004.
[9] Cui H X, Zhang J, Geng Y H, et al. Space-air-ground integrated network
(SAGIN) for 6G: Requirements, architecture and challenges[J].China
Communications, 2022,19(2):90-108. doi: 10.23919/JCC.2022.02.008.
[10] Ji B F, Wang Y A, Song K, et al. A survey of computational intelligence
for 6G: Key technologies,applications and trends[J]. IEEE Transactions on
Industrial Informatics, 2021, 17(10): 7145–7154.
[11] Liu J J, Shi Y P, Fadlullah Z M, et al. Space-air-ground integrated network:
A survey[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4):
2714–2741.
[12] Mao B , Tang F , Kawamoto Y ,et al.Optimizing Computation Offloading
in Satellite-UAV-Served 6G IoT: A Deep Learning Approach[J].IEEE
Network: The Magazine of Computer Communications, 2021, 35
(4):102-108.
[13] 李晓青,贺占权,周卫彤.支持 MEC 的天地一体化网络下任务卸载和资
源分配[J].计算机应用与软件, 2023, 40(2):130-137.Li X Q, He Z Q, Zhou W T. Task offloading and resource allocation for
the MEC enabled integrated satellite -terrestrial network[J].Computer
applications and software,2023, 40(2):130-137.
[14] Liu J, Zhao X, Qin P, et al. Joint dynamic task offloading and resource
scheduling for WPT enabled space-air-ground power Internet of Things[J]
IEEE Transactions on Network Science and Engineering. 2022, 9(2):
660–677.
[15] Tang Q Q, Fei Z S, Li B, et al.Computation offloading in LEO satellite
networks with hybrid cloud and edge computing[J]. IEEE Internet of
Things Journal, 2021, 8(11):9164-9176.
[16] Zhang S B, Liu A J, Han C, et al. Multiagent reinforcement learning-based
orbital edge offloading in SAGIN supporting internet of remote things[J].
IEEE Internet of Things Journal, 2023,10(23):20472-20483.
[17] Chen Y L, Ai B, Niu Y, et al. Energy-constrained computation offloading
in Space-Air-Ground Integrated Networks using distributionally robust
optimization[J]. IEEE Transactions on Vehicular Technology,2021,
70(11):12113-12125
[18] Zhou C H, Wu W, He H L, et al. Deep reinforcement learning for
Delay-Oriented IoT task scheduling in SAGIN[J]. IEEE Transactions on
Wireless Communications, 2021, 20(2):911-925.
[19] Zhou C H, Wu W, He H L, et al. Delay-Aware IoT task scheduling in
Space-Air-Ground Integrated Network[C]//GLOBECOM 2019 - 2019
IEEE Global Communications Conference.IEEE, 2019:1-9.
[20] 李斌,刘文帅,费泽松.面向空天地异构网络的边缘计算部分任务卸载策
略[J].电子与信息学报, 2022, 44(9):8.
Li B, Liu W S, Fei Z S.Partial Computation Offloading for Mobile Edge
Computing in Space-Air-Ground Integrated Network[J]. Journal of
Electronics and Information Technology.2022, 44(9):8.
[21] Liu Y D, Li B, Yang Y X, et al.Joint delay and completion rate
optimization for dependent task offloading in Space-Air-Ground
Integrated Network[C]//2023 9th International Conference on Computer
and Communications (ICCC), 2023:327-331.
[22] Zheng K C, Jiang G D, Liu X Y, et al. DRL-based offloading for
computation delay minimization in wireless powered multi-access edge
computing[J]. IEEE Trans. Commun. 2023, 71(3), 1755–1770.
[23] Wang Y H, Li B, He J H, et al. Joint latency-oriented, energy consumption
and carbon emission for a Space–Air–Ground Integrated Network with
newly designed power technology[J]. Electronics. 2023,12(17):3537.
[24] Qin P, Fu Y, Xie Y B, et al. Multi-Agent learning-based optimal task
offloading and UAV trajectory planning for AGIN-power IoT[J]. IEEE
Transactions on Communications, 2023, 71(7):4005-4017.
[25] Little J D C. A proof for the queuing formula: L= λ W[J]. Operations
research, 1961, 9(3): 383-387
[26] Zhang Z B, Li X H, An J P, et al. Model-Free attitude control of spacecraft
based on PID-Guide TD3 algorithm[J].International Journal of Aerospace
Engineering, 2020,4: 8874619.
[27] Kumar A S, Zhao L, Fernando X. Task offloading and resource allocation
in Vehicular networks: A lyapunov-based deep reinforcement learning
approach[J].IEEE Transactions on Vehicular Technology,
2023.7(10):13360-13373.
[28] Ma G F, Wang X W, Hu M J, et al. DRL-based computation offloading
with queue stability for vehicular-cloud-assisted mobile edge computing
systems[J]. IEEE Transactions on Intelligent Vehicles, 2023,
8(4):2797-2809.
[29] Wu Q Q. Zeng Y, Zhang R. Joint trajectory and communication design for
Multi-UAV enabled wireless networks[J]. IEEE Transactions on Wireless
Communications, 2018,17(3):219-221.
[30] Deng D, Li J X, Jhaveri R H, et al. Reinforcement-learning-based
optimization on energy efficiency in UAV networks for IoT[J]. IEEE
Internet of Things Journal, 2023,10(3): 2767-2775.
|