[1] Saeed Z, Yousaf M H, Ahmed R, et al. On-board small-scale object detection for unmanned aerial vehicles (UAVs)[J]. Drones, 2023, 7(5): 310.
[2] Bisio I, Haleem H, Garibotto C, et al. Performance evaluation and analysis of drone-based vehicle detection techniques from deep learning perspective[J]. IEEE Internet of Things Journal, 2021, 9(13): 10920-10935.
[3] Hoshino W, Seo J, Yamazaki Y. A study for detecting disaster victims using multi-copter drone with a thermographic camera and image object recognition by SSD[C]//2021 IEEE/ASME international conference on advanced intelligent mechatronics (AIM). IEEE, 2021: 162-167.
[4] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 779-788.
[5] Jiang P, Ergu D, Liu F, et al. A Review of Yolo algorithm developments[J]. Procedia computer science, 2022, 199: 1066-1073.
[6] Pirasteh S, Rashidi P, Rastiveis H, et al. Developing an algorithm for buildings extraction and determining changes from airborne LiDAR, and comparing with R-CNN method from drone images[J]. Remote Sensing, 2019, 11(11): 1272.
[7] Seo D M, Woo H J, Kim M S, et al. Identification of asbestos slates in buildings based on faster region-based convolutional neural network (faster R-CNN) and drone-based aerial imagery[J]. Drones, 2022, 6(8): 194.
[8] Liu W, Qiang J, Li X, et al. UAV image small object detection based on composite backbone network[J]. Mobile Information Systems, 2022, 2022(1): 7319529.
[9] Wang G, Chen Y, An P, Hong H, Hu J, Huang T. UAV-YOLOv8: A Small-Object-Detection Model Based on Improved YOLOv8 for UAV Aerial Photography Scenarios. Sensors. 2023; 23(16):7190.
[10] Guo J, Lou H, Chen H, et al. A new detection algorithm for alien intrusion on highway[J]. Scientific reports, 2023, 13(1): 10667.
[11] Zhao Tong, Liu Jieyu, and Duan Zhiqiang, “UAV Target Detection based on RetinaNet,” 2019 Chinese Control And Decision Conference (CCDC), pp. 3342–3346, Jun. 2019.
[12] 王殿伟, et al."基于改进Double-Head RCNN的无人机航拍图像小目标检测算法."北京航空航天大学学报 1-10.doi:10.13700/j.bh.1001-5965.2022.0591. Wang D W, et al. Small target detection algorithm of UAV aerial image based on improved Double-Head RCNN. Journal of Beijing University of Aeronautics and Astronautics
[13] Wang F, Wang H, Qin Z, et al. UAV target detection algorithm based on improved YOLOv8[J]. IEEE Access, 2023.
[14] 王舒梦,徐慧英,朱信忠,等.基于改进YOLOv8n航拍轻量化小目标检测算法:PECS-YOLO[J/OL].计算机工程:1-16[2024-08-27].https://doi.org/10.19678/j.issn.1000-3428.0069353. Wang S M, Xu H Y, Zhu X Z, et al. Lightweight small object detection algorithm based on improved YOLOv8n aerial photography: PECS-YOLO[J/OL]. Computer Engineering: 1-16[2024-08-27].https://doi.org/10.19678/j.issn.1000-3428.0069353.
[15] 张佳承,韦锦,陈义时.改进YOLOv8的实时轻量化鲁棒绿篱检测算法[J/OL].计算机工程:1-16[2024-08-27].https://doi.org/10.19678/j.issn.1000-3428.0069524. Zhang J C, Wei J, Chen Y S. Improved YOLOv8 real-time lightweight robust hedge detection algorithm[J/OL]. Computer Engineering: 1-16[2024-08-27].https://doi.org/10.19678/j.issn.1000-3428.0069524.
[16] Gale T, Elsen E, Hooker S. The state of sparsity in deep neural networks[J]. arXiv preprint arXiv:1902.09574, 2019.
[17] Evci U, Gale T, Menick J, et al. Rigging the lottery: Making all tickets winners[C]//International conference on machine learning. PMLR, 2020: 2943-2952.
[18] Kang M, Ting C M, Ting F F, et al. ASF-YOLO: A novel YOLO model with attentional scale sequence fusion for cell instance segmentation[J]. Image and Vision Computing, 2024, 147: 105057.
[19] Wang C Y, Bochkovskiy A, Liao H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2023: 7464-7475.
[20] Liu S, Qi L, Qin H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 8759-8768.
[21] Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 2117-2125.
[22] Zheng Z, Wang P, Liu W, et al. Distance-IoU loss: Faster and better learning for bounding box regression[C]//Proceedings of the AAAI conference on artificial intelligence. 2020, 34(07): 12993-13000.
[23] Tong Z, Chen Y, Xu Z, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[J]. arXiv preprint arXiv:2301.10051, 2023.
[24] Zhang H, Xu C, Zhang S. Inner-iou: more effective intersection over union loss with auxiliary bounding box[J]. arXiv preprint arXiv:2311.02877, 2023.
[25] Siliang M, Yong X. MPDIoU: A loss for efficient and accurate bounding box regression[J]. arXiv preprint arXiv:2307.07662, 2023. [26] Lee J, Park S, Mo S, et al. Layer-adaptive sparsity for the magnitude-based pruning[J]. arXiv preprint arXiv:2010.07611, 2020.
[27] Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.
[28] Du D, Zhu P, Wen L, et al. VisDrone-DET2019: The vision meets drone object detection in image challenge results[C]//Proceedings of the IEEE/CVF international conference on computer vision workshops. 2019: 0-0.
[29] 张智,易华挥,郑锦.聚焦小目标的航拍图像目标检测算法[J].电子学报,2023,51(04):944-955. Zhang Z, Yi H H, Zheng J. Target detection Algorithm in aerial image focusing on small target [J]. Acta Electronica Sinica, 2023,51(04):944-955.
|