[1] Khalil H A. Towards Optimizing Hybrid Movie Recommender Systems[J]. Revue d'Intelligence Artificielle,
2024, 38(1):159-173.
[2] Ahmadian Yazdi H, Seyyed Mahdavi S J, Ahmadian Yazdi H. Dynamic educational recommender system ba
sed on Improved LSTM neural network[J]. Scientific Reports, 2024, 14(1): 4381.
[3] Singh P K, Pramanik P K D, Sinhababu N, et al. Detecting Unknown Shilling Attacks in Recommendation S
ystems[J]. Wireless Personal Communications, 2024: 1-28.
[4] 伍之昂, 庄毅, 王有权, 等. 基于特征选择的推荐系统托攻击检测算法[J]. 电子学报, 2012, 40(8): 1687-16
93.
WU Z, ZHUANG Y, WANG Y, CAO J, et al. Shilling Attack Detection Based on Feature Selection for Reco
mmendation Systems[J], Acta Electronica Sinica, 2012, 40(8): 1687-1693.
[5] Chirita P A, Nejdl W, Zamfir C. Preventing shilling attacks in online recommender systems[C]//Proceedings
of the 7th annual ACM international workshop on Web information and data management. New York, USA:
2005: 67-74.
[6] Burke R, Mobasher B, Williams C, et al. Classification features for attack detection in collaborative recomm
ender systems[C]//Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery
and data mining. New York, USA: KDD,2006: 542-547.
[7] Williams C A, Mobasher B, Burke R. Defending recommender systems: detection of profile injection attacks
[J]. Service Oriented Computing and Applications, 2007, 1(3): 157-170.
[8] Barbieri J, Alvim L G M, Braida F, et al. Simulating real profiles for shilling attacks: A generative approach
[J]. Knowledge-Based Systems, 2021, 230: 107390.
[9] Rani S, Kaur M, Kumar M, et al. Detection of shilling attack in recommender system for YouTube video stat
istics using machine learning techniques[J]. Soft Computing, 2023, 27(1): 377-389. [10] Cao J, Wu Z, Mao B, et al. Shilling attack detection utilizing semi-supervised learning method for collaborat
ive recommender system[J]. World Wide Web, 2013, 16: 729-748.
[11] 叶榕,邵剑飞,邵建龙.基于用户长短期偏好的个性化推荐[J].吉林大学学报(理学版),2024,62(03):615-62
8.DOI:10.13413/j.cnki.jdxblxb.2023224.
Ye Rong, Shao Jianfei, Shao Jianlong. Personalized recommendation based on users' long-term and short-ter
m preferences [J]. Journal of Jilin University (Science Edition), 2024,62 (03): 615-628. DOI:10.13413/j.cnk
i.jdxblxb.2023224.
[12] 雒晓辉,吴云,王晨星,等.基于用户长短期偏好的序列推荐模型[J].计算机科学,2023,50(04):47-55.
LUO X, WU Y, WANG C, YU W, et al. Sequential Recommendation Model Based on User's Long and Short
Term Preference[J], Jisuanji kexue, 2023, 50(4): 47-55.
[13] 吕成戍. 基于用户项目属性偏好的协同过滤推荐算法[J]. 计算机技术与发展, 2018, 28(4): 152-156.
Cheng-shu LYU. A Robust Collaborative Filtering Recommendation Algorithm Based on User Preference of
Item Attributes[J], 计算机技术与发展, 2018, 28(4): 152-156,160.
[14] 田俊峰, 蔡红云. 托攻击与推荐系统安全[J]. 河北大学学报 (自然科学版), 2018, 38(6): 640.
Junfeng TIAN, Hongyun CAI. Shilling attacks and security of recommender systems[J], 河北大学学报(自
然科学版), 2018, 38(6): 640-647,655.
[15] Lee J S, Zhu D. Shilling attack detection—a new approach for a trustworthy recommender system[J]. INFO
RMS Journal on Computing, 2012, 24(1): 117-131.
[16] 卫星君, 顾清华. 针对协同过滤推荐系统的混淆托攻击模型[J]. 计算机与数字工程, 2018, 46(8): 1575-15
79, 1696.
Xingjun WEI, Qinghua GU. Shilling Attack Model of Obfuscation for Collaborative Filtering Recommender
System[J], 计算机与数字工程, 2018, 46(8): 1575-1579,1696.
[17] Gao M, Yuan Q, Ling B, et al. Detection of abnormal item based on time intervals for recommender systems
[J]. The Scientific World Journal, 2014, 2014(1): 845897.
[18] Gunes I. A novel clustered-based detection method for shilling attack in private environments[J]. PeerJ Com
puter Science, 2024, 10: e2137.
[19] 邵晨. 面向协同过滤推荐系统的托攻击检测方法研究[D]. 哈尔滨:哈尔滨理工大学,2023.
Shao Chen. Research on shilling attack detection for collaborative filtering recommender systems [D]. Harbi
n: harbin university of science and technology, 2023.
[20] Karthikeyan P, Selvi S T, Neeraja G, et al. Prevention of shilling attack in recommender systems using discre
te wavelet transform and support vector machine[C]//2016 eighth international conference on Advanced Co
mputing. Chiang Mai, Thailand: IEEE, 2017: 99-104.
[21] 刘慧, 纪科, 陈贞翔, 等. 结合图卷积神经网络和集成方法的推荐系统恶意攻击检测[J].计算机科学,202
4,51(S1):952-960.
Liu Hui, Ji Ke, Chen Zhenxiang, et al. Malicious attack detection in recommendation systems combining gra
ph convolutional neural networks and ensemble methods [J]. Computer Science, 2024,51(S1):952-960.
[22] Zhang F, Zhang Z, Zhang P, et al. UD-HMM: An unsupervised method for shilling attack detection based on
hidden Markov model and hierarchical clustering[J]. Knowledge-Based Systems, 2018, 148: 146-166.
[23] Cai H, Zhang F. An unsupervised approach for detecting group shilling attacks in recommender systems base
d on topological potential and group behaviour features[J]. Security and Communication Networks, 2021, 20
21(1): 2907691.
[24] 吕成戍. 基于非对称半监督集成 SVM 的托攻击检测方法[J]. 运筹与管理, 2018, 27(8): 84.
Cheng-shu LV. Shilling Attack Detection Approach Based on Asymmetric Semi-supervised Ensemble SVM[J], Operations Research and Management Science, 2018, 27(8): 84-91.
[25] 卫星君, 顾清华. 基于特征指标推荐系统托攻击半监督检测[J]. 计算机应用研究, 2018, 35(7):2185-2188.
Xingjun Wei, Qinghua Gu. Semi-supervised detection of shilling attack for recommender system based on c
haracteristic index[J], Application Research of Computers, 2018, 35(7): 2185-2188.
[26] Zhou Q, Wu J, Duan L. Recommendation attack detection based on deep learning[J]. Journal of Information
Security and Applications, 2020, 52: 102493.
[27] 于金霞, 李佳昕, 李星宇, 等. 多尺度特征融合的托攻击检测方法[J]. Journal of Chongqing University of P
osts & Telecommunications (Natural Science Edition), 2023, 35(5):863-872.
YU J, LI J, LI X, TANG Y, et al. Shilling attack detection method based on multi-scale feature fusion[J], Jou
rnal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 2023, 35(5)
[28] Shao C, zhong yi, Sun Y. Shilling attack detection for collaborative recommender systems: a gradient boosti
ng method[J]. Mathematical Biosciences and Engineering, 2022, 19(7): 7248-7271.
[29] Li H, Gao M, Zhou F, et al. Fusing hypergraph spectral features for shilling attack detection[J]. Journal of inf
ormation security and applications, 2021, 63: 103051.
[30] Shams S, Leith D. Attack Detection Using Item Vector Shift in Matrix Factorisation Recommenders[J]. arXi
v e-prints, 2023: 2312.00512.
[31] Narayanan P, Vivekanandan K. Hybrid CNN and RNN-based shilling attack framework in social recommend
er networks[J]. EAI Endorsed Transactions on Scalable Information Systems, 2022, 9(35): e6-e6.
[32] 雷梦宁, 丁爱玲, 王新美, 等. 基于混合特征值的托攻击检测算法[J]. 计算机技术与发展, 2021:87-92.
Lei Mengning, Ding Ailing, Wang Xinmei, et al. Shilling attack detection algorithm based on hybrid eigenva
lue [J]. Computer Technology and Development, 2021:87-92.
[33] 王心浩.基于变分自编码和监督原型网络的推荐系统托攻击检测方法研究[D].南京,南京财经大学.
Wang Xinhao. Research on shilling attack detection method in recommender systems based on variational au
toencoder and supervised prototype network [D]. Nanjing, Nanjing University of Finance and Economics.
[34] Li L, Wang Z, Li C, et al. Collaborative filtering recommendation using fusing criteria against shilling attack
s[J]. Connection Science, 2022, 34(1): 1678-1696.
[35] 艾均, 赵兴源, 苏湛, 等. 用户评分偏好相似性的近邻推荐算法研究[J]. 软件导刊,2022,21(9):52-56.
AI J, ZHAO X, SU Z, HU J, MA T, SU R, et al. Nearest Neighbor Recommendation Algorithm Based on Si
milarity of User Rating Preference[J], Software Guide, 2022, 21(9)
[36] 李文涛, 高旻, 李华, 等. 一种基于流行度分类特征的托攻击检测算法[J]. 自动化学报, 2015, 41(9): 1563-
1576.
Li Wentao, Gao Min, Li Hua, et al. An shilling attack detection algorithm based on popularity degree feature
s [J]. acta automatica sinica, 2015, 41(9): 1563-1576.
|