[1]Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., ... & Polosukhin, I. Attention is all you need
[J]. Advances in neural information processing systems, 2017,
30.
[2] 石争浩, 李成建, 周亮, 等. Transformer 驱动的图像分类
研究进展 [J]. 中国图象图形学报, 2023, 28(9): 2661-2692.
Shi Zhenghao, Li Chengjian, Zhou Liang, et al. Research
progress on image classification driven by Transformer [J].
Journal of Image and Graphics of China, 2023, 28(9):
2661-2692. (in Chinese)
[3] 付苗苗, 邓淼磊, 张德贤. 基于深度学习和 Transformer
的目标检测算法 [J]. 计算机工程与应用, 2023, 59(1): 12.
Fu Miaomiao, Deng Miaolei, Zhang Dexian. Object detection
algorithm based on deep learning and Transformer [J].Computer Engineering and Applications, 2023, 59(1): 12. (in
Chinese)
[4]Zheng, S., Lu, J., Zhao, H., Zhu, X., Luo, Z., Wang, Y., ... &
Feng, J. Rethinking semantic segmentation from a sequence
-to-sequence perspective with transformers [C]//Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2021: 6881-6890.
[5]Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D.,
Zhai, X., Unterthiner, T., ... & Houlsby, N. An image is worth
16x16 words: Transformers for image recognition at scale [R].
arXiv preprint arXiv:2010.11929, 2020.
[6]Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles,
A., & Jégou, H. Training data-efficient image transformers &
distillation through attention [C]//International Conference on
Machine Learning. PMLR, 2021: 10347-10357. [7]Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., ... & Guo,
B. Swin transformer: Hierarchical vision transformer using
shifted windows [C]//Proceedings of the IEEE/CVF
International Conference on Computer Vision. 2021:
10012-10022.
[8]Shi J, Tang L, Gao Z, et al. MG-Trans: Multi-scale Graph
Transformer with Information Bottleneck for Whole Slide
Image Classification[J]. IEEE Transactions on Medical
Imaging, 2023.
[9]Ding S, Wang J, Li J, et al. Multi-scale prototypical
transformer for whole slide image
classification[C]//International conference on medical image
computing and computer-assisted intervention. Cham:
Springer Nature Switzerland, 2023: 602-611.
[10]Han, K., Xiao, A., Wu, E., Guo, J., Xu, C., & Wang, Y.
Transformer in transformer [J]. Advances in Neural
Information Processing Systems, 2021, 34: 15908-15919.
[11]Otsu, N. A threshold selection method from gray-level
histograms [J]. IEEE Transactions on Systems, Man, and
Cybernetics, 1979, 9(1): 62-66.
[12]Adams, R., & Bischof, L. Seeded region growing [J]. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
1994, 16(6): 641-647.
[13]张博.基于边缘检测的细胞图像分割方法研究与实现
[D] .武汉: 武汉理工大学, 2024.
Zhang, B. Research and Implementation of Cell Image
Segmentation Method Based on Edge Detection [D]. Wuhan:
Wuhan University of Technology, 2024. (in Chinese)
[14]Long, J., Shelhamer, E., & Darrell, T. Fully convolutional
networks for semantic segmentation [C]//Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition. 2015: 3431-3440.
[15]Ronneberger, O., Fischer, P., & Brox, T. U-Net:
Convolutional networks for biomedical image segmentation
[C]//International Conference on Medical Image Computing
and Computer-Assisted Intervention. Springer, Cham, 2015:
234-241.
[16]Lin A, Chen B, Xu J, et al. Ds-transunet: Dual swin
transformer u-net for medical image segmentation[J]. IEEE
Transactions on Instrumentation and Measurement, 2022, 71:
1-15.
[17]Chen B, Liu Y, Zhang Z, et al. Transattunet: Multi-level
attention-guided u-net with transformer for medical image
segmentation[J]. IEEE Transactions on Emerging Topics in
Computational Intelligence, 2023.
[18]Zhang, Y., Liu, H., Hu, Q., & Wang, Y. TransFuse: Fusing
transformers and CNNs for medical image segmentation
[C]//International Conference on Medical Image Computing
and Computer-Assisted Intervention. Springer, Cham, 2021:
14-24.
[19]Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Wang, Y., ... &
Zhou, S. K. TransUNet: Transformers make strong encoders
for medical image segmentation [R]. arXiv preprint
arXiv:2102.04306, 2021.
[20]Cao H, Wang Y, Chen J, et al. Swin-unet: Unet-like pure
transformer for medical image segmentation[C]//European
conference on computer vision. Cham: Springer Nature
Switzerland, 2022: 205-218.
[21]Liu J, Pasumarthi S, Duffy B, et al. One model to synthesize
them all: Multi-contrast multi-scale transformer for missing
data imputation[J]. IEEE Transactions on Medical Imaging,
2023, 42(9): 2577-2591.
[22]Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., & Wei,
Y. Deformable Convolutional Networks [C]//Proceedings of
the IEEE International Conference on Computer Vision
(ICCV). 2017: 764-773.
[23]ACDC Challenge. Retrieved from
https://www.creatis.insa-lyon.fr/Challenge/acdc/index.html.
[24]ISIC 2018: Skin Lesion Analysis Towards Melanoma
Detection. Retrieved from
https://challenge2018.isic-archive.com/.
[25]Zhang, Y., Liu, H., Hu, Q., & Wang, Y. ConvFormer:
Plug-and-Play CNN-Style Transformers for Improving
Medical Image Segmentation [R]. arXiv preprint
arXiv:2108.05237, 2021.
|