[1] Wilson T, Wiebe J, Hoffmann P. Recognizing contextual
polarity in phrase-level sentiment analysis[C]//
Proceedings of human language technology conference
and conference on empirical methods in natural
language processing. 2005: 347-354.
[2] Bahdanau D, Cho K, Bengio Y. Neural machine
translation by jointly learning to align and translate[J].
arxiv preprint arxiv:1409.0473, 2014.
[3] Schmidhuber J, Hochreiter S. Long short-term memory[J].
Neural Comput, 1997, 9(8): 1735-1780.
[4] Tang D, Qin B, Liu T. Aspect level sentiment classification
with deep memory network[J]. arxiv preprint
arxiv:1605.08900, 2016.
[5] Zhang C, Li Q, Song D. Aspect-based sentiment classification
with aspect-specific graph convolutional networks[J]. arXiv
preprint arXiv:1909.03477, 2019.
[6] Liang S, Wei W, Mao X L, et al. BiSyn-GAT+: Bi-syntax
aware graph attention network for aspect-based sentiment
analysis[J]. arxiv preprint arxiv:2204.03117, 2022.
[7] Banarescu L, Bonial C, Cai S, et al. Abstract meaning
representation for sembanking[C]//Proceedings of the 7th
linguistic annotation workshop and interoperability with
discourse. 2013: 178-186.
[8] Wang Y, Huang M, Zhu X, et al. Attention-based LSTM for
aspect-level sentiment classification[C]//Proceedings of the
2016 conference on empirical methods in natural language
processing. 2016: 606-615.
[9] Xing B, Liao L, Song D, et al. Earlier attention? aspect-aware
LSTM for aspect-based sentiment analysis[J]. arXiv preprint
arXiv:1905.07719, 2019.
[10] Chen P, Sun Z, Bing L, et al. Recurrent attention network on
memory for aspect sentiment analysis[C]//Proceedings of the
2017 conference on empirical methods in natural language
processing. 2017: 452-461.
[11] Gu S, Zhang L, Hou Y, et al. A position-aware bidirectional
attention network for aspect-level sentiment
analysis[C]//Proceedings of the 27th international conference
on computational linguistics. 2018: 774-784.
[12] hou J, Cui G, Hu S, et al. Graph neural networks: A review of
methods and applications[J]. AI open, 2020, 1: 57-81.
[13] 杨春霞,吴亚雷,闫晗等. 融合双图卷积与门控线性单元的
方面级情感分析模型[J]. 计算机工程, 2024, 50(4):141-149.
Yang C X, Wu Y L, Yan H, et al. Aspect-Level Sentiment
Analysis Model Based on Double Graph Convolution and
GLU[J]. Computer Engineering, 2024, 50(4):141-149.
[14] 杨春霞,徐奔,陈启岗等. 融合深度 BiGRU 与全局图卷积的
方面级情感分析模型[J]. 小型微型计算机系统, 2023,
44(1):132-139.
Yang C X, Xu B, Chen Q G, et al. Aspect Level Sentiment
Analysis Model Based on Deep BIGRU and Global Graph
Convolution[J]. Journal of Chinese Mini-Micro Computer
Systems. 2023, 44(1):132-139.
[15] Zhang Y, Qi P, Manning C D. Graph convolution over pruned
dependency trees improves relation extraction[J]. arXivpreprint arXiv:1809.10185, 2018.
[16] Chen G, Tian Y, Song Y. Joint aspect extraction and sentiment
analysis with directional graph convolutional
networks[C]//Proceedings of the 28th international conference
on computational linguistics. 2020: 272-279.
[17] Liang B, Su H, Gui L, et al. Aspect-based sentiment analysis
via affective knowledge enhanced graph convolutional
networks[J]. Knowledge-Based Systems, 2022, 235: 107643.
[18] He P, Liu X, Gao J, et al. Deberta: Decoding-enhanced bert
with disentangled attention[J]. arXiv preprint
arXiv:2006.03654, 2020.
[19] Cai D, Lam W. AMR parsing via graph-sequence iterative
inference[J]. arXiv preprint arXiv:2004.05572, 2020.
[20] Ma D, Li S, Zhang X, et al. Interactive attention networks for
aspect-level sentiment classification[J]. arxiv preprint
arxiv:1709.00893, 2017.
[21] Chen P, Sun Z, Bing L, et al. Recurrent attention network on
memory for aspect sentiment analysis[C]//Proceedings of the
2017 conference on empirical methods in natural language
processing. 2017: 452-461.
[22] Zhang C, Li Q, Song D. Aspect-based sentiment classification
with aspect-specific graph convolutional networks[J]. arxiv
preprint arxiv:1909.03477, 2019.
[23] Li R, Chen H, Feng F, et al. DualGCN: Exploring syntactic
and semantic information for aspect-based sentiment
analysis[J]. IEEE Transactions on Neural Networks and
Learning Systems, 2022.
[24] Xiao Z, Wu J, Chen Q, et al. BERT4GCN: Using BERT
intermediate layers to augment GCN for aspect-based
sentiment classification[J]. arXiv preprint arXiv:2110.00171,
2021.
[25] Chen C, Teng Z, Wang Z, et al. Discrete opinion tree induction
for aspect-based sentiment analysis[C]//Proceedings of the
60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). 2022: 2051-2064.
[26] Zhang M, Zhu Y, Liu Z, et al. Span-level aspect-based
sentiment analysis via table filling[C]//Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). 2023: 9273-9284.
[27] Chai H, Yao Z, Tang S, et al. Aspect-to-Scope Oriented
Multi-view Contrastive Learning for Aspect-based Sentiment
Analysis[C]//Findings of the Association for Computational
Linguistics: EMNLP 2023. 2023: 10902-10913.
[28] Chen B, Ouyang Q, Luo Y, et al. S $^ 2$ GSL: Incorporating
Segment to Syntactic Enhanced Graph Structure Learning for
Aspect-based Sentiment Analysis[J]. arxiv preprint
arxiv:2406.02902, 2024.
[29] Naseem T, Shah A, Wan H, et al. Rewarding Smatch:
Transition-based AMR parsing with reinforcement learning[J].
arxiv preprint arxiv:1905.13370, 2019.
[30] Zhang S, Ma X, Duh K, et al. AMR parsing as
sequence-to-graph transduction[J]. arxiv preprint
arxiv:1905.08704, 2019.
[31] Zhou Q, Zhang Y, Ji D, et al. AMR parsing with latent
structural information[C]//Proceedings of the 58th annual
meeting of the association for computational linguistics. 2020:
4306-4319.
|