[1] 黄梓程,陈鹏飞,余广坝,等.面向Java微服务系统的透明
请 求 追 踪 及 采 样 方 法 [J]. 软件学报 , 2023,
34(7):3167-3187.
Transparent Request Tracing and Sampling Method for
Java-based Microservice System
[2] ESTEVES T, NEVES F, OLIVEIRA R, et al. CAT:
Content-aware tracing and analysis for distributed
systems[C]//Proceedings of the 22nd International
Middleware Conference. 2021: 223-235.
[3] 付楠,程光,滕跃,等.基于非侵入式数据采集的微服务依
赖关系发现方法[J].网络空间安全科学学报, 2023,
1(2):112-121.
Micro-Service Dependency Discovery Method Based on
Non-Intrusive Data Capture
[4] C.N.Foundation. OpenTracing[EB/OL].
https://opentracing.io.
[5] RHEE S, SEO S, KIM S. Hybrid approach of relation
network and localized graph convolutional filtering for
breast cancer subtype classification[J]. arXiv preprint
arXiv:1711.05859, 2017.
[6] JIANG W, LUO J. Graph neural network for traffic
forecasting: A survey[J]. Expert systems with
applications, 2022, 207: 117921.
[7] HU H, GU J, ZHANG Z, et al. Relation networks for
object detection[C]//Proceedings of the IEEE conference
on computer vision and pattern recognition. 2018:
3588-3597.
[8] SOMASHEKAR G, DUTT A, VADDAVALLI R, et al.
B-MEG: Bottlenecked-microservices extraction using
graph neural networks[C]//Companion of the 2022
ACM/SPEC International Conference on Performance
Engineering. 2022: 7-11.
[9] HE Z, CHEN P, LI X, et al. A spatiotemporal deep
learning approach for unsupervised anomaly detection in
cloud systems[J]. IEEE Transactions on Neural Networks
and Learning Systems, 2020, 34(4): 1705-1719.
[10] PARK J, CHOI B, LEE C, et al. GRAF: A graph neural
network based proactive resource allocation framework
for SLO-oriented microservices[C]//Proceedings of the
17th International Conference on emerging Networking
EXperiments and Technologies. 2021: 154-167.
[11] NGUYEN H X, ZHU S, LIU M. Graph-PHPA:graph-based proactive horizontal pod autoscaling for
microservices using LSTM-GNN[C]//2022 IEEE 11th
International Conference on Cloud Networking
(CloudNet). IEEE, 2022: 237-241.
[12] HOU X, LI C, LIU J, et al. AlphaR: Learning-powered
resource management for irregular, dynamic
microservice graph[C]//2021 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE,
2021: 797-806.
[13] DESAI U, BANDYOPADHYAY S, TAMILSELVAM S.
Graph neural network to dilute outliers for refactoring
monolith application[C]//Proceedings of the AAAI
conference on artificial intelligence. 2021, 35(1): 72-80.
[14] MATHAI A, BANDYOPADHYAY S, DESAI U, et al.
Monolith to Microservices: Representing Application
Software through Heterogeneous Graph Neural
Network[C]//IJCAI. 2022: 3905-3911.
[15] JACOB S, QIAO Y, YE Y, et al. Anomalous distributed
traffic: Detecting cyber security attacks amongst
microservices using graph convolutional networks[J].
Computers & Security, 2022, 118: 102728.
[16] PANAHANDEH M, HAMOU-LHADJ A, HAMDAQA
M, et al. ServiceAnomaly: An anomaly detection
approach in microservices using distributed traces and
profiling metrics[J]. Journal of Systems and Software,
2024, 209: 111917.
[17] LAS-CASAS P, MACE J, GUEDES D, et al. Weighted
sampling of execution traces: Capturing more needles
and less hay[C]//Proceedings of the ACM Symposium on
Cloud Computing. 2018: 326-332.
[18] HE S, FENG B, LI L, et al. STEAM:
observability-preserving trace sampling[C]//Proceedings
of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of
Software Engineering. 2023: 1750-1761.
[19] INDRASIRI K, SIRIWARDENA P. Designing
Microservices: Designing, Developing, and
Deploying[J]. 2018.DOI:10.1007/978-1-4842-3858-5_2.
[20] 杨勇,李影,吴中海.分布式追踪技术综述[J].软件学
报,2020,31(07):2019-2039.DOI:10.13328/j.cnki.jos.0060
47.
Survey of State-of-the-art Distributed Tracing
Technology.
[21] 张齐勋,吴一凡,杨勇,等.微服务系统服务依赖发现技术
综述[J].软件学报, 2024, 35(1):118-135.
Survey on Service Dependency Discovery Technologies
for Microservice Systems
[22] 冀超,彭鑫,赵文耘.基于负载关系图的微服务自动伸缩
方法[J].计算机应用与软件, 2022, 39(6):9.
A Load Relationship Graph Based Auto-scaling
Approach For Microservice Systems
[23] VALDIVIA J A, LORA-GONZÁLEZ A, LIMÓN X, et
al. Patterns related to microservice architecture: a
multivocal literature review[J]. Programming and
Computer Software, 2020, 46: 594-608.
[24] 王璐,姜宇轩,李青山,等.微服务故障检测研究综述[J].
计 算 机 学 报 , 2023,
46(11):2342-2369.DOI:10.11897/SP.J.1016.2023.02342.
A Review of Microservice Fault Detection
[25] LEE C, YANG T, CHEN Z, et al. Eadro: An end-to-end
troubleshooting framework for microservices on
multi-source data[C]//2023 IEEE/ACM 45th
International Conference on Software Engineering
(ICSE). IEEE, 2023: 1750-1762.
[26] BHATIA S, LIU R, HOOI B, et al. Real-time anomaly
detection in edge streams[J]. ACM Transactions on
Knowledge Discovery from Data (TKDD), 2022, 16(4):
1-22.
[27] BHATIA S, WADHWA M, KAWAGUCHI K, et al.
Sketch-based anomaly detection in streaming
graphs[C]//Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining.
2023: 93-104.
[28] ZHENG L, LI Z, LI J, et al. AddGraph: Anomaly
Detection in Dynamic Graph Using Attention-based
Temporal GCN[C]//Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence.
International Joint Conferences on Artificial Intelligence
Organization, 2019.
[29] CAI L, CHEN Z, LUO C, et al. Structural temporal graph
neural networks for anomaly detection in dynamic
graphs[C]//Proceedings of the 30th ACM international
conference on Information & Knowledge Management.
2021: 3747-3756.
[30] SANKAR A, WU Y, GOU L, et al. Dysat: Deep neural
representation learning on dynamic graphs via
self-attention networks[C]//Proceedings of the 13th
international conference on web search and data mining.
2020: 519-527.
[31] LI Y, LIU Y, WANG H, et al. Glad: Content-aware
dynamic graphs for log anomaly detection[C]//2023
IEEE International Conference on Knowledge Graph
(ICKG). IEEE, 2023: 9-18.
|