[1] Li, Jing, et al. "A survey on deep learning for named entity
recognition." IEEE transactions on knowledge and data
engineering 34.1 (2020): 50-70.
[2] Weber, Leon, et al. "HunFlair: an easy-to-use tool for
state-of-the-art biomedical named entity
recognition." Bioinformatics 37.17 (2021): 2792-2794.
[3] Alfred, R., Leong, L. C., On, C. K., & Anthony, P. Malay
Named Entity Recognition Based on Rule-Based
Approach. International Journal of Machine Learning and
Computing, 2014, 4(3).
[4] Quimbaya A P, Múnera A S, Rivera R A G, et al. Named
entity recognition over electronic health records through a
combined dictionary-based approach. Procedia Computer
Science, 2016, 100: 55-61.
[5] Konkol M, Konopík M. CRF-based Czech named entity
recognizer and consolidation of Czech NER research //
Proceedings of the 16th International Conference on Text,
Speech, Springer Berlin: Springer, 2013: 153-160.
[6] McCallum A, Li W. Early results for named entity
recognition with conditional random fields, feature
induction and web-enhanced lexicons // Proceedings of
CoNLL-2003. Canada: Edmonton, 2003: 188-191.
[7] Lin B Y, Xu F F, Luo Z, et al. Multi-channel bilstm-crf
model for emerging named entity recognition in social
media // Proceedings of the 3rd Workshop on Noisy
User-generated Text. Copenhagen: ACL, 2017:160-165.
[8] 陈雪松,朱鑫海,王浩畅.基于 PMV-LSTM 的中文医学命
名实体识别 [J]. 计 算 机 工 程 与 设
计 ,2022,43(11):3257-3263.DOI:10.16208/j.issn1000-7024
.2022.11.034.
Chinese Medical Named Entity Recognition Based on
PMV-LSTM
[9] 夏成魁,李少波.基于 BERT-BiLSTM-MHA-CRF 的中文
命名实体识别方法 [J]. 计算机与数字工
程,2023,51(09):2087-2091+2102.
A Chinese Named Entity Recognition Method Based on
BERT-BiLSTM-MHA-CRF [10] Huang Z, Xu W, Yu K. Bidirectional LSTM-CRF models
for sequence tagging. arXiv preprint ,2015,
DOI:10.48550/arXiv:1508.01991.
[11] Ma X, Hovy E. End-to-end sequence labeling via
bi-directional LSTM-CNNs-CRF // Proceedings of the
54th Annual Meeting of the Association for Computational
Linguistics. Berlin: ACL, 2016: 1064-1074.
[12] 陈鹏, 马洪彬, 周佳伦等. FCG-NNER:一种融合字形信
息的中文嵌套命名实体识别方法. 重庆理工大学学报
(自然科学), 2023, 37(12):222-231.
FCG-NNER: A Method for Chinese Nested Named Entity
Recognition with Integrated Character Shape Information
[13] 许力,李建华.基于 BERT 和 BiLSTM-CRF 的生物医学命
名实体识别.计算机工程与科学,2021,43(10):1873-1879.
Biomedical Named Entity Recognition Based on BERT
and BiLSTM-CRF. Computer Engineering and Science
[14] Vinyals O, Blundell C, Lillicrap T, et al. Matching
networks for one shot learning // Proceedings of the 30th
International Conference on Neural Information
Processing Systems. San Cambridge: NIPS, 2016:
3630–3638.
[15] Snell J, Swersky K, Zemel R. Prototypical networks for
few-shot learning // Proceedings of the 31st International
Conference on Neural Information Processing Systems.
California: NIPS, 2017: 4080-4090.
[16] Ma T T, Jiang H Q, Wu Q H, et al. Decomposed
meta-learning for few-shot named entity recognition //
Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistic, Dublin:ACL, 2022:
1584-1596.
[17] Finn C, Abbeel P, Levine S. Model-agnostic meta-learning
for fast adaptation of deep networks // Proceedings of the
34th International Conference on Machine Learning,
Sydney: ICML, 2017: 1126-1135.
[18] Wang J N, Wang C Y, Tan C Q,et al. SpanProto: A
two-stage span-based prototypical network for few-shot
named entity recognition // Proceedings of the 2022
Conference on Empirical Methods in Natural Language
Processing. Abu Dhabi: EMNLP, 2022: 3466-3476.
[19] Li X L, Liang P. Prefix-Tuning: Optimizing continuous
prompts for generation // Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural
Language Processing. Bangkok: ACL-IJCNLP, 2021,
4582-4597.
[20] Layegh A, Payberah A H, Soylu A, et al. ContrastNER:
Contrastive-based prompt tuning for few-shot NER. arXiv
preprint , 2023, DOI:10.48550/arXiv: 2305.17951.
[21] Shen Y, Tan Z, Wu S, et al. PromptNER: Prompt Locating
and Typing for Named Entity Recognition // Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers).
Toronto: ACL, 2023: 12492-12507.
[22] Ma R T, Zhou X, Gui T, et al. Template-free prompt tuning
for few-shot NER // Proceedings of the 2022 Conference
of the North American Chapter of the Association for
Computational Linguistics. Seattle: NAACL, 2022,
5721-5732.
[23] Das S S S, Katiyar A, Passonneau R J, et al. CONTaiNER:
Few-shot named entity recognition via contrastive learning
// Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistic. Dublin: ACL,
2022: 6338-6353.
[24] Li Y, Qian T. Type-aware decomposed framework for
few-shot named entity recognition // Proceedings of the
2022 Conference on Empirical Methods in Natural
Language Processing. Singapore: EMNLP, 2023:
8911–8927.
[25] Devlin J, Chang M W, Lee K, et al. Bert: Pre-training of
deep bidirectional transformers for language understanding
// 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies. Minneapolis: NAACL, 2019, 1:
4171-4186.
[26] Dozat T, Manning C D. Deep biaffine attention for neural
dependency parsing. arXiv preprint, 2016, DOI:10.48550
/arXiv:1611.01734.
[27] Yu J, Bohnet B, Poesio M. Named entity recognition as
dependency parsing // Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics.
Seattle: ACL, 2020: 6470-6476.
[28] Ding N, Xu G W, Chen Y L, et al. Few-NERD: A few-shot
named entity recognition dataset // Proceedings of the 59th
Annual Meeting of the Association for ComputationalLinguistics and the 11th International Joint Conference on
Natural Language Processing. Stroudsburg: ACL, 2021:
3198-3213.
[29] Zeldes A. The GUM corpus: Creating multilayer resources
in the classroom. Language Resources and Evaluation,
2017, 51(3): 581-612.
[30] Pradhan S, Moschitti A, Xue N W, et al. Towards robust
linguistic analysis using OntoNotes // Proceedings of the
17th Conference on Computational Natural Language
Learning. Stroudsburg: CoNLL, 2013: 143-152.
[31] Sang E F T K, De Meulder F. Introduction to the
CoNLL-2003 shared task: Language-independent named
entity recognition // Proceedings of the 17th Conference on
Natural Language Learning at HLT-NAACL 2003.
Stroudsburg: ACL, 2003:142–147.
[32] Derczynski L, Nichols E, Van Erp M, et al. Results of the
WNUT2017 shared task on novel and emerging entity
recognition // Proceedings of the 3rd Workshop on Noisy
User-generated Text. Stroudsburg: EMNLP, 2017:
140-147.
[33] Yang Y, Katiyar A. Simple and effective few-shot named
entity recognition with structured nearest neighbor
learning // Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing. Punta
Cana: EMNLP, 2020: 6365-6375.
[34] Wang P Y, Xu R X, Liu T Y, et al. An enhanced span-based
decomposition method for few-shot sequence labeling //
Proceedings of the 19th North American Chapter of the
Association for Computational Linguistics. Seattle:
NAACL, 2022: 5012-5024.
[35] Hou Y T, Che W X, Lai Y K, et al. Few-shot slot tagging
with collapsed dependency transfer and label-enhanced
task-adaptive projection network // Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, Dublin: ACL, 2020: 1381-1393.
|