[1] ZHANG D S, LU G J. Review of shape representation and
description techniques[J]. Pattern Recognition, 2004,37(1): 1-19.
[2] 刘锋,王斌. 目标边界点集的层次化描述及其形状检索
应用[J]. 软件学报. 2019, 30(9): 2886-2903.
LIU F, WANG B. Hierarchical point-set description of
object edge and its application in shape retrieval[J].
Journal of Software 2019, 30(9): 2886-2903. (in Chinese)
[3] ZHANG F, LIU S Q, WANG D B, et al. Aircraft
recognition in infrared image using wavelet moment
invariants[J]. Image and Vision Computing, 2009, 27(4):
313-318.
[4] RANI S, LAKHWANI K, 3KUMAR S. Three
dimensional objects recognition and pattern recognition
technique related challenges: a review[J]. Multimedia
Tools and Applications, 2022, 81(12): 17303-17346.
[5] ZHAO X M, ZHANG S Q. A review on facial expression
recognition: feature extraction and classification[J]. IETE
Technical Review, 2016, 33(5): 505-517.
[6] AMLEKAR M M, ALI M M H, GAIKWAD A T.
Classification of plants using invariant features and a
neural network[C]// Information and Communication
Technology for Intelligent Systems. Singapore: Springer,
2019: 127-136.
[7] SHOKOUFANDEH A, KESELMAN Y, DEMIRCI M F,
et al. Many-to-many feature matching in object
recognition: a review of three approaches[J]. IET
Computer Vision, 2012, 6(6): 500-513.
[8] ECKHARDT U, MADERLECHNER G. Invariant
thinning[J]. International Journal of Pattern Recognition
and Artificial Intelligence, 1993, 7(05): 1115-1144.
[9] BERTRAND G, AKTOUF Z. Three-dimensional thinning
algorithm using subfields[C]// Vision Geometry III.
Boston, MA, United States: SPIE, 1995, 2356: 113-124.
[10] SETHIAN J A. Fast marching methods[J]. SIAM Review,
1999, 41(2): 199-235.
[11] BORGEFORS G. On digital distance transforms in three
dimensions[J]. Computer Vision and Image Understanding,
1996, 64(3): 368-376.
[12] BRANDT J W, ALGAZI V R. Continuous skeleton
computation by voronoi diagram[J]. CVGIP: Image
Understanding, 1992, 55(3): 329-338.
[13] 刁智华, 吴贝贝, 毋媛媛, 等. 基于图像处理的骨架提
取算法的应用研究[J]. 计算机科学, 2016, 43(S1):
232-235.
Diao Z H, Wu B B, Wu Y Y, et al. Application research of
skeleton extraction algorithm based on image
processing[J]. Computer Science, 2016, 43(S1): 232-235.
(in Chinese)
[14] TEAGUE M R. Image analysis via the general theory of
moments[J]. Josa, 1980, 70(8): 920-930.
[15] Hu M K. Visual pattern recognition by moment
invariants[J]. IRE Transactions on Information Theory,
1962, 8(2): 179-187.
[16] MIAO Z J. Zernike moment-based image shape analysis
and its application[J]. Pattern Recognition Letters, 2000,
21(2): 169-177.
[17] GOSHTASBY A. Description and discrimination of planar
shapes using shape matrices[J]. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 1985, 7(6):
738-743.
[18] ZAHN C T, ROSKIES R Z. Fourier descriptors for plane
closed curves[J]. IEEE Transactions on Computers, 1972,
100(3): 269-281.
[19] CHUANG G C H, KUO C C J. Wavelet descriptor of
planar curves: theory and applications[J]. IEEE
Transactions on image processing, 1996, 5(1): 56-70.
[20] MOKHTARIAN F, BOBER M. Curvature scale space
representation: theory, applications, and mpeg-7
standardization[M]. Stuttgart, Germany: Springer
Dordrecht, 2003.
[21] BACKES A R, CASANOVA D, BRUNO O M. A complex
network-based approach for boundary shape analysis[J].
Pattern Recognition, 2009, 42(1): 54-67.
[22] BACKES A R, BRUNO O M. Shape classification using
complex network and multi-scale fractal dimension[J].
Pattern Recognition Letters, 2010, 31(1): 44-51.
[23] SCABINI L F S, FISTAROL D O, CANTERO S V, et al.
Angular descriptors of complex networks: a novel
approach for boundary shape analysis[J]. Expert Systems
with Applications, 2017, 89(1): 362-373.
[24] RIBAS L C, NEIVA M B, BRUNO O M. Distance
transform network for shape analysis[J]. Information
Sciences, 2019, 470(1): 28-42.
[25] CARLSSON G. Topology and data[J]. Bulletin of the
American Mathematical Society, 2009, 46(2): 255-308.
[26] ZOMORODIAN A, CARLSSON G. Computing persistent
homology[J]. Discrete & Computational Geometry. 2005,
33(2): 249-274. [27] Carlsson G, Ishkhanov T, De Silva V, et al. On the local
behavior of spaces of natural images[J]. International
Journal of Computer Vision, 2008, 76(1): 1-12.
[28] 张景亮, 鞠先孟. 持续同调在图像分类和识别中的应用
[J]. 应用数学与计算数学学报. 2017, 31(4): 494-508.
ZHANG J L, JU X M. Application of persistent homology
to image classification and recognition[J]. Communication
on Applied Mathematics and Computation. 2017, 31(4):
494-508. (in Chinese)
[29] DUMAN A N. Grain analysis of atomic force microscopy
images via persistent homology[J]. Ultramicroscopy, 2021,
220: 113176.
[30] 周志慧. 持久同调在地标型数据统计分析中的应用[D].
沈阳: 沈阳师范大学, 2023.
ZHOU Z H. Application of persistent homology in
landmark data's statistical analysis abstract[D]. Shenyang:
Shenyang Normal University, 2023. (in Chinese)
[31] 杨波, 李国华, 李金海. 基于网络方法的形状图像特征
选择[J]. 昆明理工大学学报(自然科学版). 2023, 48(6):
30-38.
YANG B, LI G H, LI J H. Shape image feature selection
based on network methods[J] Journal of Kunming
University of Science and Technology (Natural Science)
2023, 48(6): 30-38. (in Chinese)
[32] AKIMALIEV M, DEMIRCI M F. Improving skeletal
shape abstraction using multiple optimal solutions[J].
Pattern Recognition, 2015, 48(11): 3504-3515.
[33] LATECKI L J, LAKAMPER R, Eckhardt T. Shape
descriptors for non-rigid shapes with a single closed
contour[C]// Proceedings IEEE Conference on Computer
Vision and Pattern Recognition. CVPR 2000. Hilton Head,
SC, USA: IEEE, 2000: 424-429.
[34] SALIMI N, LOH K H, DHILLON S K, et al.
Fully-automated identification of fish species based on
otolith contour: using short-time Fourier transform and
discriminant analysis (STFT-DA)[J]. PeerJ, 2016, 4:
e1664.
[35] SÖDERKVIST O. Computer vision classification of
leaves from swedish trees[D]. Sverige: Linkoping
University, 2001.
[36] Wu S G, Bao F S, Xu E Y, et al. A leaf recognition
algorithm for plant classification using probabilistic neural
network[C]// 2007 IEEE International Symposium on
Signal Processing and Information Technology. Giza,
Egypt: IEEE, 2007: 11-16.
[37] ZHANG F, LIU S, WANG D, et al. Aircraft recognition in
infrared image using wavelet moment invariants[J]. Image
and Vision Computing, 2009, 27(4): 313-318.
[38] Meshram V, Patil K. FruitNet: Indian fruits image dataset
with quality for machine learning applications[J]. Data in
Brief, 2022, 40(1): 107686.
[39] He K, Zhang X, Ren S, et al. Deep residual learning for
image recognition[C]// Proceedings of the IEEE
conference on computer vision and pattern recognition.
2016: 770-778.
|