[1] Wang S, Cao L, Wang Y, et al. A survey on session-based
recommender systems[J]. ACM Computing Surveys
(CSUR), 2021, 54(7): 1-38.
[2] 王燕,范林,赵妮妮.利用门控网络构建用户动态兴趣的
序列推荐模型[J].计算机工程,2022,48(08):283-291.DOI:
10.19678/j.issn.1000-3428.0062184. Wang Yan, Fan Li
n, Zhao Nini. Construct a sequence recommendation
model of users' dynamic interests using gated network
[J].Computer Engineering,2022,48(08):283-291.DOI:10.1
9678/j.issn.1000-3428.0062184.
[3] 魏星,孙浩,曹健,等.基于增强记忆网络的会话推荐算法
[J/OL].计算机工程,1-7[2024-11-03].http://kns.cnki.net/kc
ms/detail/31.1289.TP.20240415.1448.004.html. Wei Xing,
Sun Hao, Cao Jian, et al. Session Recommendation
Algorithm Based on Enhanced Memory Network[J/OL].
Computer Engineering,1-7[2024-11-03].http://kns.cnki.ne
t/kcms/detail/31.1289.TP.20240415.1448.004.html.
[4] Yan A, Cheng S, Kang W C, et al. CosRec: 2D con
volutional neural networks for sequential recommendati
on[C]//Proceedings of the 28th ACM international con
ference on information and knowledge management. 2
019: 2173-2176.
[5] Xu C, Zhao P, Liu Y, et al. Recurrent convolutional neural
network for sequential recommendation[C]//The world
wide web conference. 2019: 3398-3404.
[6] Zhang Y, Yang B, Liu H, et al. A time-aware self-att
ention based neural network model for sequential recommendation[J]. Applied Soft Computing, 2023, 133: 1
09894.
[7] Huang L, Ma Y, Liu Y, et al. Position-enhanced and
time-aware graph convolutional network for sequential
recommendations[J]. ACM Transactions on Informatio
n Systems, 2023, 41(1): 1-32.
[8] Wang R, Lou J, Jiang Y. Session-based recommendati
on with time-aware neural attention network[J]. Expert
Systems with Applications, 2022, 210: 118395.
[9] Wu L, Li S, Hsieh C J, et al. SSE-PT: Sequential rec
ommendation via personalized transformer[C]//Proceedi
ngs of the 14th ACM conference on recommender sys
tems. 2020: 328-337.
[10] Huang L, Ma Y, Liu Y, et al. Position-enhanced and
time-aware graph convolutional network for sequential
recommendations[J]. ACM Transactions on Informatio
n Systems, 2023, 41(1): 1-32.
[11] Zhang Y, Yang B, Liu H, et al. A time-aware self-att
ention based neural network model for sequential reco
mmendation[J]. Applied Soft Computing, 2023, 133: 1
09894.
[12] Wang R, Lou J, Jiang Y. Session-based recommendation
with time-aware neural attention network[J]. Expert
Systems with Applications, 2022, 210: 118395.
[13] Chae D K, Kang J S, Kim S W, et al. CFGAN: A generic
collaborative filtering framework based on generative
adversarial networks[C]//Proceedings of the 27th ACM
international conference on information and knowledge
management. 2018: 137-146.
[14] Wang J, Yu L, Zhang W, et al. Irgan: A minimax game for
unifying generative and discriminative information
retrieval models[C]//Proceedings of the 40th International
ACM SIGIR conference on Research and Development in
Information Retrieval. 2017: 515-524.
[15] Chen X, Li S, Li H, et al. Generative adversarial user
model for reinforcement learning based recommendation
system[C]//International Conference on Machine Learning.
PMLR, 2019: 1052-1061.
[16] Ren R, Liu Z, Li Y, et al. Sequential recommendation with
self-attentive multi-adversarial network[C]//Proceedings of
the 43rd international ACM SIGIR conference on research
and development in information retrieval. 2020: 89-98.
[17] Wu L, Li J, Wang Y, et al. R-drop: Regularized dropout for
neural networks[J]. Advances in Neural Information
Processing Systems, 2021, 34: 10890-10905.
[18] Wu L, Li S, Hsieh C J, et al. Stochastic shared embe
ddings: Data-driven regularization of embedding layers
[J]. Advances in Neural Information Processing Syste
ms, 2019, 32.
[19] Pan X, Ge C, Lu R, et al. On the integration of selfattention and convolution[C]//Proceedings of the IEEE/
CVF conference on computer vision and pattern recog
nition. 2022: 815-825.
[20] Kang W C, McAuley J. Self-attentive sequential reco
mmendation[C]//2018 IEEE international conference on
data mining (ICDM). IEEE, 2018: 197-206.
[21] Sun F, Liu J, Wu J, et al. BERT4Rec: Sequential rec
ommendation with bidirectional encoder representations
from transformer[C]//Proceedings of the 28th ACM i
nternational conference on information and knowledge
management. 2019: 1441-1450.
[22] Kenton J D M W C, Toutanova L K. Bert: Pre-traini
ng of deep bidirectional transformers for language und
erstanding[C]//Proceedings of naacL-HLT. 2019, 1: 2.
[23] Huang L, Fu M, Li F, et al. A deep reinforcement le
arning based long-term recommender system[J]. Knowl
edge-based systems, 2021, 213: 106706.
[24] Zhao X, Xia L, Yin D, et al. Deep Reinforcement Le
arning for Whole-Chain Recommendations[J]. 2020.
[25] Izmailov P, Podoprikhin D, Garipov T, et al. Averagin
g weights leads to wider optima and better generalizat
ion[J]. arXiv preprint arXiv:1803.05407, 2018.
[26] Bozic V, Dordevic D, Coppola D, et al. Rethinking A
ttention: Exploring Shallow Feed-Forward Neural Netw
orks as an Alternative to Attention Layers in Transfor
mers[J]. arXiv preprint arXiv:2311.10642, 2023.
[27] Tang J, Wang K. Personalized top-n sequential recom
mendation via convolutional sequence embedding[C]//P
roceedings of the eleventh ACM international conferen
ce on web search and data mining. 2018: 565-573.
[28] Hidasi B. Session-based Recommendations with Recurr
ent Neural Networks[J]. arXiv preprint arXiv:1511.069
39, 2015.
[29] Ma C, Kang P, Liu X. Hierarchical gating networksfor sequential recommendation[C]//Proceedings of the 25
th ACM SIGKDD international conference on knowle
dge discovery & data mining. 2019: 825-833.
[30] Fan Z, Liu Z, Wang S, et al. Modeling sequences as
distributions with uncertainty for sequential recommen
dation[C]//Proceedings of the 30th ACM international
conference on information & knowledge management.
2021: 3019-3023.
[31] Hou Y, Hu B, Zhang Z, et al. Core: simple and effec
tive session-based recommendation within consistent re
presentation space[C]//Proceedings of the 45th internati
onal ACM SIGIR conference on research and develop
ment in information retrieval. 2022: 1796-1801.
[32] Du X, Yuan H, Zhao P, et al. Frequency enhanced hy
brid attention network for sequential recommendation
[C]//Proceedings of the 46th International ACM SIGIR
Conference on Research and Development in Informa
tion Retrieval. 2023: 78-88.
[33] Chen J, Zou G, Zhou P, et al. Sparse Enhanced Netw
ork: An Adversarial Generation Method for Robust A
ugmentation in Sequential Recommendation[C]//Proceed
ings of the AAAI Conference on Artificial Intelligenc
e. 2024, 38(8): 8283-8291.
[34] Wang J, Rathi P, Sundaram H. A Pre-trained Zero-sho
t Sequential Recommendation Framework via Popularit
y Dynamics[C]//Proceedings of the 18th ACM Confere
nce on Recommender Systems. 2024: 433-443
|