[1] ZHUANG M, WU Q, WAN F, et al. State-of-the-art
non-invasive brain-computer interface for neural
rehabilitation: A review[J]. Journal of Neurorestoratology,
2020, 8(1): 12-25.
[2] CHEN X, WANG Y, GAO S. EEG-based brain-computer
interfaces: A review of recent progress in signal
processing and applications[J]. IEEE Transactions on
Cognitive and Developmental Systems, 2022, 14(3):
732-748.
[3] VEENA N, ANITHA N. A review of non-invasive BCI
devices[J]. International Journal of Biomedical
Engineering and Technology, 2020, 34(3): 205-233.
[4] Nakanishi M, Wang Y, Chen X. High-speed SSVEP-based
BCI with filter bank canonical correlation analysis[J].
Journal of Neural Engineering, 2021, 18(4): 046028.
[5] 李明, 王伟, 张涛. 基于稳态视觉诱发电位的脑机接口
系统设计与医疗应用[J]. 中国生物医学工程学报, 2021,
40(4): 432-439.
LI M, WANG W, ZHANG T. Design and medical
applications of SSVEP-based brain-computer interface
systems[J]. Chinese Journal of Biomedical Engineering,
2021, 40(4): 432-439.
[6] 周晓燕, 刘洋, 高小榕. 可穿戴脑电设备在军事脑机接
口中的最新进展 [J]. 仪器仪表学报 , 2023, 44(2):
156-165.
ZHOU X, LIU Y, GAO X. Recent advances in wearable
EEG devices for military brain-computer interfaces[J].
Chinese Journal of Scientific Instrument, 2023, 44(2):
156-165.
[7] MÜLLER-PUTZ G, et al. Benchmarking brain-computer
interfaces outside the laboratory: A case study with
SSVEP-based gaming[J]. Frontiers in Human
Neuroscience, 2022, 16: 812345.
[8] ZHANG Y, et al. Enhancing SSVEP Detection Through
Cortical Source Reconstruction[J]. NeuroImage, 2018,
183:897-908.
[9] WANG Y, JUNG T P. A Hybrid EEG-fNIRS Approach for
Robust SSVEP Classification[J]. Journal of Neural
Engineering, 2020, 17(3):036028.
[10] CHEN X, et al. Deep Learning-Based Spatial Filtering forHigh-Speed SSVEP-BCI[J]. IEEE Transactions on
Biomedical Engineering, 2021, 68(4):1123-1132.
[11] ZHANG Q, WANG L, CHEN Z, et al. Cross-subject
fluctuation analysis in SSVEP-based BCIs[J]. Journal of
Neural Engineering, 2021, 18(4): 0460a3.
[12] CHEN X, LI H, WANG Y. Activation mechanisms of
parieto-occipital cortex during SSVEP generation[J].
NeuroImage, 2021, 237: 118143.
[13] ROSENHOLTZ R. A unified model of crowding and
visual search[J]. Vision Research, 2020, 173: 1-12.
[14] VAN DEN BERG R, ROERDINK J, CORNELISSEN F.
FFT amplitude analysis of crowding effects in visual
perception[J]. PLoS Computational Biology, 2020, 16(4):
e1007842.
[15] NAKANISHI M, TANAKA T, WANG Y. Unsupervised
frequency-recognition method of SSVEPs using a filter
bank implementation of binary subband CCA[J]. IEEE
Transactions on Biomedical Engineering, 2019, 66(3):
725-735.
[16] GUNEY O B, OBLOKULOV M, et al. A Deep Neural
Network for SSVEP-Based Brain-Computer Interfaces[J].
Ieee Transactions on Biomedical Engineering, 2022, 69(2):
932-944.
[17] PAN Y D, LI N, et al. Short-time SSVEP data extension
by a novel generative adversarial networks based
framework[J]. arXiv preprint arXiv, 2023, 2301. 05599.
[18] MING D, LI R, GAO X. SSVEP-GAN: Subject-invariant
feature learning via adversarial neural style transfer[J].
Medical Image Analysis, 2023, 88: 102856.
[19] PAN Y D, ZHANG Y, et al. A survey of deep
learning-based classification methods for steady-state
visual evoked potentials[J]. Brain-Apparatus.
Communication: A Journal of Bacomics,2023,2(1):
2181102.
[20] PAN Y, CHEN J, ZHANG Y, et al. An efficient
CNN-LSTM network with spectral normalization and
label smoothing technologies for SSVEP frequency
recognition[J]. Journal of Neural Engineering,
2022,19(5):102797.
[21] LIU Y, CHEN X, WANG Y. Deep frequency-domain
residual network with multi-scale spectral pyramid for
high-accuracy SSVEP decoding[J]. Journal of Neural
Engineering, 2023, 20(3): 450-458.
[22] ZHANG S, AN D, LIU J, et al. Dynamic decomposition
graph convolutional neural network for SSVEP-based
brain-computer interface[J]. Neural networks: the official
journal of the International Neural Network
Society,2023,172:106075.
[23] 陈小刚, 李航, 王毅军. 基于时空卷积注意力网络的
SSVEP 解码方法研究[J]. 自动化学报, 2023, 49(5):
1021-1032.
CHEN X G, LI H, WANG Y J. Spatio-temporal
convolutional attention network for SSVEP decoding[J].
Acta Automatica Sinica, 2023, 49(5): 1021-1032.
[24] ZHANG Z, LI D D, ZHAO Y, et al. A flexible speller
based on time-space frequency conversion SSVEP
stimulation paradigm under dry electrode[J]. Frontiers In
Computational Neuroscience, 2023,17:
1101726-1101726.
[25] DING W, SHAN J, FANG B, et al. Filter Bank
Convolutional Neural Network for Short Time-Window
Steady-State Visual Evoked Potential Classification[J].
Ieee Transactions on Neural Systems and Rehabilitation
Engineering,2021,29:2615-2624.
[26] CHEN J N, SUN F C, et al. Attention-Based Multimodal
tCNN for Classification of Steady-State Visual Evoked
Potentials and Its Application to Gripper Control[J]. Ieee
Transactions on Neural Networks and Learning
Systems,2023,21(2):1124-1138.
[27] 明建国, 张伟, 刘洋. 混合神经网络在高速脑机接口中
的应用[J]. 中 国 生 物医 学工 程 学 报 , 2024, 43(2):
156-165.MING J G, ZHANG W, LIU Y. Application of hybrid
neural networks in high-speed brain-computer
interfaces[J]. Chinese Journal of Biomedical Engineering,
2024, 43(2): 156-165.
[28] RAVI A, BENI N H, MANUEL J, et al. Comparing
user-dependent and user-independent training of CNN for
SSVEP BCI[J]. Journal of Neural
Engineering,2020,17(2):046080.
[29] CHEN J B, ZHANG Y S, PAN Y D, et al. A
transformer-based deep neural network model for SSVEP
classification[J]. Neural Networks,2023,164:521-534.
[30] NAKANISHI M, TANAKA T, WANG Y. DeepFreqNet: A
multi-scale frequency-domain deep network for SSVEP
classification[J]. IEEE Transactions on Biomedical
Engineering, 2021, 68(12): 3565-3574.
[31] NAKANISHI M, WANG Y J, et al. A Comparison Study
of Canonical Correlation Analysis Based Methods for
Detecting Steady-State Visual Evoked Potentials[J]. Plos
One,2015,10(10):18.
[32] WANG Y J, CHEN X G, GAO X R, et al. A Benchmark
Dataset for SSVEP-Based Brain-Computer Interfaces[J].
Ieee Transactions on Neural Systems and Rehabilitation
Engineering,2017,25(10):1746-1752.
[33] ZHU F, JIANG L, DONG G, et al. An open dataset for
wearable SSVEP-based brain-computer interfaces[J].
Sensors, 2021, 21(3): 1256.
[34] LIU J W, WANG R M, YANG Y K, et al. Convolutional
Transformer-Based Cross Subject Model for
SSVEP-Based BCI Classification[J]. IEEE Journal of
Biomedical and Health Informatics, 2024, 28(11):
6581-6593.
[35] QIN K, XU R, LI S R, et al. A Time-Local Weighted
Transformation Recognition Framework for Steady State
Visual Evoked Potentials Based Brain–Computer
Interfaces[J]. IEEE Transactions on Neural Systems and
Rehabilitation Engineering, 2024, 32(2): 1596-1605.
|