[1] 胡帅, 李华玲, 郝德琛. 改进 U-Net 的多级边缘增强医学图像分割网络[J]. 计算机工程, 2024, 50(4): 286-293.HU S, LI H, HAO D. Improved MultistageEdge-Enhanced Medical Image Segmentation Network ofU-Net[J]. Computer Engineering, 2024, 50(4): 286-293.[2] DOU Q, LIU Q, HENG PA, et al. Unpaired multi-modalsegmentation via knowledge distillation[J]. IEEE Trans onmedical imaging, 2020, 39(7):2415-25.[3] 林志洁, 郑秋岚, 梁涌等, 邢卫. 基于内卷 U-Net 的医学图像分割模型[J]. 计算机工程, 2022, 48(8): 180-186.LIN Z, ZHENG Q, LIANG Y, et al. Medical ImageSegmentation Model Based on Involution U-Net[J].Computer Engineering, 2022, 48(8): 180-186.[4] LEE DH. Pseudo-label: The simple and efficientsemi-supervised learning method for deep neuralnet-works[C] // In Workshop on challenges inrepresentation learning, ICML. 2013: 896.[5] TARVAINEN A, VALPOLA H. Mean teachers are betterrole models: Weight-averaged consistency targets improvesemi-supervised deep learning results[C] // Advances inneural information processing systems. 2017: 30.[6] YU L, WANG S, LI X, et al. Uncertainty-awareself-ensembling model for semi-supervised 3D left atriumsegmentation[C] // In Medical image computing andcomputer assisted intervention–MICCAI 2019. 2019:605-613.[7] HANG W, FENG W, LIANG S, et al. Local and globalstructure-aware entropy regularized mean teacher modelfor 3d left atrium segmentation[C] // In Medical ImageComputing and Computer Assisted Intervention–MICCAI2020. 2020: 562-571.[8] SHEN Z, CAO P, YANG H, et al. Co-training withhigh-confidence pseudo labels for semi-supervisedmedical image segmentation[C] // International JointConference on Artificial Intelligence. 2023:4199–4207.[9] XU Z, WANG Y, LU D, et al. Ambiguity-selectiveconsistency regularization for mean-teachersemi-supervised medical image segmentation[J]. MedicalImage Analysis, 20232021, 88:102880.[10] RONNEBERGER O, FISCHER P, BROX T. U-net:Convolutional networks for biomedical imagesegmentation[C] // In Medical image computing andcomputer-assisted intervention–MICCAI 2015. 2015:234-241.[11] ISENSEE F, JAEGER PF, KOHL SA, et al. nnU-Net: aself-configuring method for deep learning-basedbiomedical image segmentation[J]. Nature methods, 2021,18(2):203-11.[12] CHEN J, LU Y, YU QT. Transformers make strongencoders for medical image segmentation[J]. arXivpreprint, 2021, arXiv:2102.043062,2021.[13] CAO H, WANG Y, CHEN J, et al. Swin-unet: Unet-likepure transformer for medical image segmentation[C] // InEuropean conference on computer vision. 2022: 205-218.[14] 赵亮, 刘晨, 王春艳. 位置信息增强的TransUnet医学图像 分 割 方 法 [J]. 计 算 机 科 学 与 探 索 , DOI:10.3778/j.issn.1673-9418.2406001.ZHAO L, LIU C, WANG C. Positional EnhancementTransUnet For Medical Image Segmentation[J]. Journalof Frontiers of Computer Science and Technology, DOI:10.3778/j.issn.1673-9418.2406001.[15] 赵凡, 张学典.集成自注意力机制的医学图像分割方法[J]. 数据采集与处理, 2024, 39(5): 1240-1250.ZHAO F, ZHANG X. Medical Image SegmentationMethod with Integrated Self-attention[J]. Journal of DataAcquisition & Processing, 2024, 39(5): 1240-1250.[16] 赖晓婷, 张静. 语义扩散对齐的多尺度感知医学图像分割方法 [J]. 计 算 机 辅 助 设计 与 图 形 学 学 报 . DOI:10.3724/SP.J.1089.2023-00604XIAOTING L, JING Z. Semantic DiffusionAlignment-based Multi-scale Perception for MedicalImage Segmentation[J]. Journal of Computer-AidedDesign & Computer Graphics. DOI:10.3724/SP.J.1089.2023-00604.[17] MILLETARI F, NAVAB N, AHMADI SA. V-net: Fullyconvolutional neural networks for volumetric medicalimage segmentation[C] //In2016 fourth internationalconference on 3D vision (3DV). 2016: 565-571.[18] WANG G, ZHAI S, LASIO G, et al. Semi-supervisedsegmentation of radiation-induced pulmonary fibrosisfrom lung CT scans with multi-scale guided denseattention[J]. IEEE Trans on medical imaging, 2021,41(3):531-42.[19] FAN DP, ZHOU T, JI GP, et al. Inf-net: Automaticcovid-19 lung infection segmentation from ct images[J].IEEE Trans on medical imaging, 2020, 39(8):2626-37.[20] 许华杰, 肖毅烽. 基于多教师网络模型的半监督语义分割方法[J]. 计算机科学, 2023, 50(12): 279-284.XU H, XIAO Y. Semi-supervised Semantic SegmentationMethod Based on Multiple Teacher Network Model[J].Computer Science, 2023, 50(12): 279-284.[21] 刘腊梅, 宗佳旭, 肖振久等. 流形正则化的交叉一致性语义分割算法[J]. 中国图象图形学报, 2022, 27(12):3542-3552.LIU L, ZONG J, JIU Z, et al. Cross-consistent semanticsegmentation algorithm based on manifoldregularization[J]. Journal of Image and Graphics, 2022,27(12): 3542-3552.[22] WANG Y, ZHANG Y, TIAN J, et al. Double-uncertaintyweighted method for semi-supervised learning[C] // InMedical Image Computing and Computer AssistedIntervention–MICCAI 2020. 2020: 542-551.[23] SHI Y, ZHANG J, LING T, et al. Inconsistency-awareuncertainty estimation for semi-supervised medical imagesegmentation[J]. IEEE Trans on medical imaging, 2021,41(3):608-20.[24] LUO X, CHEN J, SONG T, et al. Semi-supervised medicalimage segmentation through dual-task consistency[C] // InProceedings of the AAAI conference on artificialintelligence. 2021: 8801-8809.[25] LUO X, LIAO W, CHEN J, et al. Efficientsemi-supervised gross target volume of nasopharyn-gealcarcinoma segmentation via uncertainty rectified pyramidconsistency[C] // Medical Image Computing andComputer Assisted Interven-tion. 2021: 318-329.[26] XIONG Z, XIA Q, HU Z, et al. A global benchmark ofalgorithms for segmenting the left atrium from lategadolinium-enhanced cardiac magnetic resonanceimaging[J]. Medical image analysis, 2021, 67:101832.[27] BERNARD O, LALANDE A, ZOTTI C, et al. Deeplearning techniques for automatic MRI cardiacmulti-structures segmentation and diagnosis: is theproblem solved? [J]. IEEE Trans on medical imaging,2018, 37(11):2514-25.[28] HELLER N, ISENSEE F, MAIER-HEIN KH, et al. Thestate of the art in kidney and kidney tumor segmentation incontrast-enhanced CT imaging: Results of the KiTS19challenge[J]. Medical image analysis, 2021, 67:101821.[29] CODELLA, NOEL CF, DAVID G, et al. Skin lesionanalysis toward melanoma detection: A challenge at the2017 international symposium on biomedical imaging(isbi), hosted by the international skin imagingcollaboration (isic)[C] // In 2018 IEEE 15th internationalsymposium on biomedical imaging (ISBI 2018), 2018:168-172.[30] LI S, ZHANG C, HE X. Shape-aware semi-supervised 3Dsemantic segmentation for medical images[C] // InMedical Image Computing and Computer AssistedIntervention–MICCAI 2020, 2020: 552-561.[31] WU Y, WU Z, WU Q, et al. Exploring smoothness andclass-separation for semi-supervised medical imagesegmentation[C] // In International conference on medicalimage computing and computer-assisted intervention, 2022:34-43.[32] CHEN X, YUAN Y, ZENG G, et al. Semi-supervisedsemantic segmentation with cross pseudo supervision[C] //In Proceedings of the IEEE/CVF conference on computervision and pattern recognition, 2021: 2613-2622.[33] YOU C, ZHAO R, STAIB L, et al. Momentum contrastivevoxel-wise representation learning for semi-supervisedvolumetric medical image segmentation[C] // InInternational Conference on Medical Image Computingand Computer-Assisted Intervention, 2022: 639-652.[34] WU Y, GE Z, ZHANG D, et al. Mutual consistencylearning for semi-supervised medical imagesegmentation[J]. Medical Image Analysis, 2022,81:102530.[35] LU S, YAN Z, CHEN W, et al. Dual consistencyregularization with subjective logic for semi-supervisedmedical image segmentation[J]. Computers in Biology andMedicine, 2024, 170:107991.[36] 郭敏, 张熙涵, 李阳. 融合注意力的教师互一致性半监督医学图像分割[J]. 计算机工程, 2024, 50(9): 313-323.GUO M, ZHANG X, LI Y. Integrated Attentional TeacherMutual Consistency Semi-Supervised Medical ImageSegmentation[J]. Computer Engineering, 2024, 50(9):313-323.[37] WANG J, LUKASIEWICZ T. Rethinking bayesian deeplearning methods for semi-supervised volumetric medicalimage segmentation[C] // In Proceedings of the IEEE/CVFConference on Computer Vision and Pattern Recognition.2022: 182-190.[38] SOHN K, BERTHELOT D, CARLINI N, et al. Fixmatch:Simplifying semi-supervised learning with consistency andconfidence[J]. Advances in neural information processingsystems, 2020, 33: 596-608.[39] CHI H, PANG J, ZHANG B, et al. Adaptive BidirectionalDisplacement for Semi-Supervised Medical ImageSegmentation[C] // In Proceedings of the IEEE/CVFConference on Computer Vision and Pattern Recognition.2024: 4070-4080.[40] ZHENG Y, TANG P, JU T, et al. FederatedSemi-supervised Learning for Medical ImageSegmentation with intra-client and inter-clientConsistency[J]. arxiv preprint, 2024, 2403.12695. |