[1] Sung M, Jeon H, Lee J, et al. Biomedical entity repr
esentations with synonym marginalization[J]. arXiv pre
print arXiv:2005.00239, 2020.
[2] Murty S, Verga P, Vilnis L, et al. Hierarchical losses
and new resources for fine-grained entity typing and
linking[C]//Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Volu
me 1: Long Papers). 2018: 97-109.
[3] Chen L, Varoquaux G, Suchanek F M. A lightweight
neural model for biomedical entity linking[C]//Proceed
ings of the AAAI conference on artificial intelligence.
2021, 35(14): 12657-12665.
[4] Bodenreider O. The unified medical language system
(UMLS): integrating biomedical terminology[J]. Nuclei
c acids research, 2004, 32(suppl_1): D267-D270.
[5] Jessop D M, Adams S E, Willighagen E L, et al. OS
CAR4: a flexible architecture for chemical text-mining
[J]. Journal of cheminformatics, 2011, 3(1): 41.
[6] Aronson A R, Lang F M. An overview of MetaMap:
historical perspective and recent advances[J]. Journal
of the American Medical Informatics Association, 201
0, 17(3): 229-236.
[7] Leaman R, Islamaj Doğan R, Lu Z. DNorm: disease
name normalization with pairwise learning to rank[J].
Bioinformatics, 2013, 29(22): 2909-2917.
[8] Leaman R, Lu Z. TaggerOne: joint named entity reco
gnition and normalization with semi-Markov Models[J].
Bioinformatics, 2016, 32(18): 2839-2846.
[9] Bhatta J, Shrestha D, Nepal S, et al. Efficient estimat
ion of Nepali word representations in vector space[J].
Journal of Innovations in Engineering Education, 202
0, 3(1): 71-77.
[10] Niu J, Yang Y, Zhang S, et al. Multi-task character-le
vel attentional networks for medical concept normaliza
tion[J]. Neural Processing Letters, 2019, 49: 1239-125
6.
[11] Dong H, Suárez-Paniagua V, Zhang H, et al. Rare dis
ease identification from clinical notes with ontologies
and weak supervision[C]//2021 43rd Annual Internatio
nal Conference of the IEEE Engineering in Medicine
& Biology Society (EMBC). IEEE, 2021: 2294-2298.
[12] N. Angell, N. Monath, S. Mohan, N. Yadav, and A.
McCallum. Clustering-based inference for biomedical e
ntity linking[C]// Proceedings of the 2021 Conference
of the North American Chapter of the Association f
or Computational Linguistics: Human Language Techn
ologies. 2021.
[13] 张晟旗, 王元龙, 李茹, 等. 基于局部注意力机制的中
文短文本实体链接[J]. 计算机工程, 2021, 47(11): 77-8
3.
Zhang, S., Wang, Y., Li, R., et al. Entity Linking for
Chinese Short Texts Based on Local Attention Mech
anism[J]. Computer Engineering, 2021, 47(11): 77-83.
[14] 饶东宁,许正辉,梁瑞仕.基于知识库问答的回答生成研
究[J/OL].计算机工程,1-8[2024-11-15].https://doi.org/10.
19678/j.issn.1000-3428.0068433.
Rao, D., Xu, Z., Liang, R. Research on Answer Gene
ration Based on Knowledge Base Question Answering
[J/OL]. Computer Engineering, 1-8 [2024-11-15]. https:
//doi.org/10.19678/j.issn.1000-3428.0068433.
[15] Ujiie S, Iso H, Yada S, et al. End-to-end biomedical
entity linking with span-based dictionary matching[J].
arXiv preprint arXiv:2104.10493, 2021.
[16] Mondal I, Purkayastha S, Sarkar S, et al. Medical ent
ity linking using triplet network[J]. arXiv preprint arX
iv:2012.11164, 2020.
[17] Liu F, Shareghi E, Meng Z, et al. Self-alignment pret
raining for biomedical entity representations[J]. arXiv
preprint arXiv:2010.11784, 2020.
[18] Ujiie S , Iso H , Aramaki E .Biomedical Entity Linki
ng with Contrastive Context Matching[J]. 2021.DOI:10.
48550/arXiv.2106.07583.
[19] Zhang S, Cheng H, Vashishth S, et al. Knowledge-ric
h self-supervision for biomedical entity linking[J]. arX
iv preprint arXiv:2112.07887, 2021.
[20] M. Douze, A. Guzhva, C. Deng, J. Johnson, G. Szilv
asy, P. Mazaré, M. Lomeli, L. Hosseini, and H. Jégo
u. The Faiss library[J]. CoRR, 2024, abs/2401.08281.
[21] Li H, Chen Q, Tang B, et al. CNN-based ranking for
biomedical entity normalization[J]. BMC bioinformati
cs, 2017, 18: 79-86.
[22] Agarwal D, Angell R, Monath N, et al. Entity linkin
g via explicit mention-mention coreference modeling[C]//Proceedings of the 2022 Conference of the North A
merican Chapter of the Association for Computational
Linguistics: Human Language Technologies. 2022.
[23] 郭俊辰,马御棠,相艳,等.基于 Prompt 打分的实体链接方
法[J/OL].计算机工程,1-11[2024-11-13].
Guo, J., Ma, Y., Xiang, Y., et al. Entity Linking Met
hod Based on Prompt Scoring[J/OL]. Computer Engin
eering, 1-11 [2024-11-13].
[24] Zhu T, Qin Y, Chen Q, et al. Enhancing Entity Repr
esentations with Prompt Learning for Biomedical Entit
y Linking[C]//IJCAI. 2022: 4036-4042.
[25] Le N D, Nguyen N T H. A metric learning-based me
thod for biomedical entity linking[J]. Frontiers in Res
earch Metrics and Analytics, 2023, 8: 1247094.
[26] Orr L, Leszczynski M, Arora S, et al. Bootleg: Chasi
ng the tail with self-supervised named entity disambig
uation[J]. arXiv preprint arXiv:2010.10363, 2020.
[27] He K, Fan H, Wu Y, et al. Momentum contrast for u
nsupervised visual representation learning[C]//Proceedin
gs of the IEEE/CVF conference on computer vision a
nd pattern recognition. 2020: 9729-9738.
[28] Shrivastava A, Gupta A, Girshick R. Training regionbased object detectors with online hard example mini
ng[C]//Proceedings of the IEEE conference on comput
er vision and pattern recognition. 2016: 761-769.
[29] Holtzman A, Buys J, Du L, et al. The curious case
of neural text degeneration[J]. arXiv preprint arXiv:19
04.09751, 2019.
[30] Sui X, Zhang Y, Song K, et al. Improving zero-shot
entity linking candidate generation with ultra-fine entit
y type information[C]//Proceedings of the 29th Interna
tional Conference on Computational Linguistics. 2022:
2429-2437.
[31] Onoe Y, Durrett G. Fine-grained entity typing for do
main independent entity linking[C]//Proceedings of the
AAAI Conference on Artificial Intelligence. 2020, 34
(05): 8576-8583.
[32] Wolf T , Debut L , Sanh V ,et al.HuggingFace's Tran
sformers: State-of-the-art Natural Language Processing
[J]. 2019.DOI:10.48550/arXiv.1910.03771.
[33] Doğan R I, Leaman R, Lu Z. NCBI disease corpus:
a resource for disease name recognition and concept
normalization[J]. Journal of biomedical informatics, 20
14, 47: 1-10.
[34] S Mohan S, Li D. Medmentions: A large biomedical
corpus annotated with umls concepts[J]. arXiv preprint
arXiv:1902.09476, 2019.
[35] Kartchner D, Deng J, Lohiya S, et al. A comprehensi
ve evaluation of biomedical entity linking models[C]//
Proceedings of the Conference on Empirical Methods
in Natural Language Processing. Conference on Empir
ical Methods in Natural Language Processing. NIH Pu
blic Access, 2023, 2023: 14462.
[36] S. Garda and U. Leser. BELHD: improving biomedica
l entity linking with homonym disambiguation[J]. CoR
R, 2024, abs/2401.05125.
|