[1] 中国城市轨道交通协会. 城市轨道交通 2023 年度统计和分析报告 [M]. 中国城市轨道交通协会信息, 2024.
[2] 冯晓云, 黄德青, 王青元, 等. 轨道交通列车综合节能研究综述 [J]. 铁道学报, 2023, 45(02): 22-34.
FENG X,Y HUANG D Q, WANG Q Y, et al. Overview on Comprehensive Energy Saving Schemes for Rail Transit Train
Operation System [J]. Journal of the China Railway Society, 2023, 45(2): 22-34.
[3] HOWLETT P G, MILROY I P, PUDNEY P J. Energy-Efficient Train Control [J]. IFAC Proceedings Volumes, 1993, 26(2,
Part 4): 1081-1088.
[4] ALBRECHT A, HOWLETT P, PUDNEY P, et al. The key principles of optimal train control-Part 1: Formulation of the
model, strategies of optimal type, evolutionary lines, location of optimal switching points [J]. Transportation Research Part
B-Methodological, 2016, 94: 482-508. [5] ALBRECHT A, HOWLETT P, PUDNEY P, et al. The key principles of optimal train control-Part 2: Existence of an optimal
strategy, the local energy minimization principle, uniqueness, computational techniques [J]. Transportation Research Part
B-Methodological, 2016, 94: 509-538.
[6] 徐凯, 杨飞凤, 涂永超, 等. 基于多粒子群协同的城轨列车速度曲线多目标优化 [J]. 铁道学报, 2021, 43(02): 95-102.
XU K, YANG F F, TU Y C, et al. Multi-objective Optimization of Speed Profile of Urban Rail Train Based on Multiple
Particle Swarms Co-evolutionary [J]. Journal of the China Railway Society, 2021, 43(2): 95-102.
[7] 李诚, 王小敏. 基于粒子群优化的 ATO 控制策略 [J]. 铁道学报, 2017, 39(03): 53-58.
LI C, WANG X M. An ATO Control Strategy Based on Particle Swarm Optimization [J]. Journal of the China Railway
Society, 2017, 39(3): 53-58.
[8] 张淼, 张琦, 刘文韬, 等. 一种基于策略梯度强化学习的列车智能控制方法 [J]. 铁道学报, 2020, 42(01): 69-75.
ZHANG M, ZHANG Q, LIU W T, et al. A Policy-Based Reinforcement Learning Algorithm for Intelligent Train Control [J].
Journal of the China Railway Society, 2020, 42(1): 69-75.
[9] YANG X, LI X, GAO Z Y, et al. A Cooperative Scheduling Model for Timetable Optimization in Subway Systems [J]. IEEE
Transactions on Intelligent Transportation Systems, 2013, 14(1): 438-447.
[10] YANG X, CHEN A, NING B, et al. Bi-objective programming approach for solving the metro timetable optimization
problem with dwell time uncertainty [J]. Transportation Research Part E-Logistics and Transportation Review, 2017, 97:
22-37.
[11] SUN P F, ZHANG C X, JIN B, et al. Timetable optimization for maximization of regenerative braking energy utilization in
traction network of urban rail transit [J]. Computers & Industrial Engineering, 2023, 183: 109448.
[12] SU S, TANG T, ROBERTS C. A Cooperative Train Control Model for Energy Saving [J]. Ieee Transactions on Intelligent
Transportation Systems, 2015, 16(2): 622-631.
[13] BAI Y, CAO Y W, YU Z, et al. Cooperative Control of Metro Trains to Minimize Net Energy Consumption [J]. IEEE
Transactions on Intelligent Transportation Systems, 2020, 21(5): 2063-2077.
[14] SHANG M Y, ZHOU Y H, FUJITA H. Energy-Saving Operation Synergy for Multiple Metro-Trains Using Map-Reduce
Parallel Optimization [J]. Ieee Transactions on Vehicular Technology, 2022, 71(2): 1319-1332.
[15] 黄苏苏, 冯浩楠. 基于车车通信的 CBTC 系统 [J]. 城市轨道交通研究, 2021, 24(06): 188-193.
HUANG S S, FENG H N. CBTC System Based on Train-train Communication [J]. Urban Mass Transit, 2021, 24(6):
188-193.
[16] 罗情平, 吴昊, 陈丽君. 基于车-车通信的列车自主运行系统研究 [J]. 城市轨道交通研究, 2018, 21(07): 46-49.
LUO Q P, WU H, CHEN L J. Train Autonomous Circumambulate System Based on Train to Train Communication [J].
Urban Mass Transit, 2018, 21(7): 46-49.
[17] 王学浩, 刘瑞娟. 基于车车通信的列车自主运行系统研究及应用 [J]. 城市轨道交通研究, 2022, 25(11): 134-139.
WANG X H, LIU R J. Research and Application of Train Autonomous Control System Based on Vehicle-to-Vehicle
Communication [J]. Urban Mass Transit, 2022, 25(11): 134-139.
[18] 范永华, 李聪. 基于车车通信的列车运行控制系统在城市轨道交通中的应用方案 [J]. 城市轨道交通研究, 2022,
25(11): 129-133.
FAN Y H, LI C. Application Scheme of Vehicle-to-Vehicle Communication Based Control System in Urban Rail Transit [J].
Urban Mass Transit, 2022, 25(11): 129-133.
[19] SCHEEPMAKER G M, GOVERDE R M P. Energy-efficient train control using nonlinear bounded regenerative braking [J].
Transportation Research Part C-Emerging Technologies, 2020, 121: 102852.
[20] SU S, WANG X, TANG T, et al. Energy-efficient operation by cooperative control among trains: A multi-agent
reinforcement learning approach [J]. Control Engineering Practice, 2021, 116: 104901.
[21] DAVIS W J. The tractive resistance of electric locomotives and cars [M]. General Electric, 1926.
[22] XUE J K, SHEN B. Dung beetle optimizer: a new meta-heuristic algorithm for global optimization [J]. Journal of
Supercomputing, 2023, 79(7): 7305-7336.
[23] 卢苡锋, 王霄. 基于二次分解和 IDBO-DABiLSTM 的短期风电功率预测模型 [J]. 计算机工程: 1-11 [2024-11-19].
LU Y F, WANG X. Short Term Wind Power Forecasting Model Based on Secondary Decomposition and IDBO-DABiLSTM
[J]. Computer Engineering, 1-11 [2024-11-19].
[24] 栾孝驰, 汤捷中, 沙云东. 基于蜣螂算法优化深度极限学习机的中介轴承故障诊断方法 [J]. 振动与冲击, 2024,
43(21): 96-106+127.
LUAN X C, TANG J Z, SHA Y D. Inter-shaft fault diagnosis method based on deep extreme learning machine optimized
with dung beetle optimizer [J]. Vibration and Shock, 2024, 43(21): 96-106+127.
[25] 杨欣. 面向节能的城市轨道交通列车运行图优化研究 [D], 2016.
YANG X, Research on Train Timetable Optimization for Energy-saving Operations in Urban Rail Transit [D], 2016.
[26] 张攀峰, 吴丹华, 董明刚. 基于粒子群优化的差分隐私深度学习模型 [J]. 计算机工程, 2023, 49(09): 144-157.
ZHANG P F, WU DH, DONG MG. Differential Privacy Deep Learning Model Based on Particle Swarm Optimization [J].
Computer Engineering, 2023, 49(09): 144-157.
[27] BILAL, PANT M, ZAHEER H, et al. Differential Evolution: A review of more than two decades of research [J]. Engineering
Applications of Artificial Intelligence, 2020, 90: 103479.
|