[1] Ke J, Wang W, Chen X, et al. Medical entity
recognition and knowledge map relationship
analysis of Chinese EMRs based on improved
BiLSTM-CRF[J]. Computers and Electrical
Engineering, 2023, 108: 108709. [2] Yi F, Liu H, Wang Y, et al. Medical Named Entity
Recognition Fusing Part-of-Speech and Stroke
Features[J]. Applied Sciences, 2023, 13(15):
8913.
[3] 赵继贵, 钱育蓉, 王魁, 侯树祥, 陈嘉颖. 中文
命名实体识别研究综述[J]. 计算机工程与应用,
2024, 60(1): 15-27.
ZHAO Jigui, QIAN Yurong, WANG Kui, HOU
Shuxiang, CHEN Jiaying. Survey of Chinese
Named Entity Recognition Research[J].
Computer Engineering and Applications, 2024,
60(1): 15-27. (in Chinese)
[4] Bowen C, Tao J, Jianmin W. Overview of
information extraction of free-text electronic
medical records [J]. Journal of Computer
Applications, 2021, 41(04): 1055-1063.
[5] Lafferty, John D. and McCallum, Andrew and
Pereira, Fernando C. N. Conditional Random
Fields: Probabilistic Models for Segmenting and
Labeling Sequence Data[C]// Proceedings of the
Eighteenth International Conference on Machine
Learning. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc,2001: 282–289.
[6] Noble W S. What is a support vector machine?[J].
Nature biotechnology, 2006, 24(12): 1565-1567.
[7] Sampathkumar H, Chen X, Luo B. Mining
adverse drug reactions from online healthcare
forums using hidden Markov model[J]. BMC
medical informatics and decision making, 2014,
14: 1-18.
[8] Tran Q, MacKinlay A, Yepes A J. Named entity
recognition with stack residual lstm and trainable
bias decoding[J]. arXiv preprint
arXiv:1706.07598, 2017.
[9] He H, Sun X. A unified model for cross-domain
and semi-supervised named entity recognition in
chinese social media[C]//Proceedings of the
AAAI conference on artificial intelligence. San
Francisco, California, USA : AAAI Press ,2017,
3216–3222.
[10] Schuster M, Paliwal K K. Bidirectional recurrent
neural networks[J]. IEEE transactions on Signal
Processing, 1997, 45(11): 2673-2681.
[11] Xu K, Zhou Z, Hao T, et al. A bidirectional
LSTM and conditional random fields approach to
medical named entity
recognition[C]//Proceedings of the International
Conference on Advanced Intelligent Systems and
Informatics 2017. Cham: Springer International
Publishing, 2018: 355-365.
[12] Wu H, Lu L, Yu B. Chinese named entity
recognition based on transfer learning and
bilstm-crf[J]. Journal of Chinese Computer
Systems, 2019, 40(6): 1142-1147.
[13] Yin M, Mou C, Xiong K, et al. Chinese clinical
named entity recognition with radical-level
feature and self-attention mechanism[J]. Journal
of biomedical informatics, 2019, 98: 103289.
[14] Zhang Y, Yang J. Chinese NER using lattice
LSTM[J]. ACL, arXiv preprint arXiv:1805.02023,
2018:1554-1564.
[15] Ma R, Peng M, Zhang Q, et al. Simplify the
usage of lexicon in Chinese NER[J]. ACL,arXiv
preprint arXiv:1908.05969, 2019:5951-5960.
[16] Devlin J. Bert: Pre-training of deep bidirectional
transformers for language understanding[J].
arXiv preprint arXiv:1810.04805, 2018.
[17] Liu W, Fu X, Zhang Y, et al. Lexicon enhanced
Chinese sequence labeling using BERT
adapter[J].ACL,arXiv preprint arXiv:2105.07148,
2021:5847-5858.
[18] 罗凌, 杨志豪, 宋雅文, 等. 基于笔画 ELMO
和多任务学习的中文电子病历命名实体识别研
究[J].计算机学报, 2020,43(10):1943-1957.
Lou L,Yang Z H,Song Y W,et al. Chinese clinical
named entity recognition based on stroke ELMo
and multitask learning[J]. Chinese Journal of
Computers, 2020,43(10):1943-1957.(in Chinese)
[19] SONG Yawen, YANG Zhihao, LUO Ling,
WANG Lei, ZHANG Yin,LIN Hongfei, WANG
Jian. Biomedical Mutation Entity Recognition
Method Based on Character Convolution Neural
Network[J]. Journal of Chinese Information
Processing. 2021, 35(5): 63-69.
[20] Li Y, Wang X, Hui L, et al. Chinese clinical
named entity recognition in electronic medical
records: development of a lattice long short-term
memory model with contextualized character
representations[J]. JMIR Medical Informatics,2020, 8(9): e19848.
[21] Wang Q, E H. A BERT-based named entity
recognition in Chinese electronic medical
record[C]//Proceedings of the 2020 9th
International Conference on Computing and
Pattern Recognition. New York, NY, USA:
Association for Computing Machinery, 2020:
13-17.
[22] Mikolov T. Efficient estimation of word
representations in vector space[J]. arXiv preprint
arXiv:1301.3781, 2013.
[23] Pennington J, Socher R, Manning C D. Glove:
Global vectors for word representation[C]//
Proceedings of the 2014 conference on empirical
methods in natural language processing
(EMNLP). Doha, Qatar: Association for
Computational Linguistics ,2014: 1532-1543.
[24] Li F, Wang Z, Hui S C, et al. Modularized
interaction network for named entity
recognition[C]//Proceedings of the 59th Annual
Meeting of the Association for Computational
Linguistics and the 11th International Joint
Conference on Natural Language Processing
(Volume 1: Long Papers). Online : Association
for Computational Linguistics ,2021: 200-209.
[25] Shi J, Sun M, Sun Z, et al. Multi-level semantic
fusion network for Chinese medical named entity
recognition[J]. Journal of Biomedical Informatics,
2022, 133: 104144.
[26] An Y, Xia X, Chen X, et al. Chinese clinical
named entity recognition via multi-head
self-attention based BiLSTM-CRF[J]. Artificial
Intelligence in Medicine, 2022, 127: 102282.
[27] 唐卓然, 柳毅. 基于词汇融合和依存关系的中
文命名实体识别[J]. 计算机工程, 2024, 50(10):
145-153.
TANG Zhuoran, LIU Yi. Chinese Named Entity
Recognition Based on Lexicon Fusion and
Dependency Relation[J]. Computer Engineering,
2024, 50(10): 145-153.
[28]林令德, 刘纳, 徐贞顺, 李昂, 李晨. 基于多层
动态融合的中文医疗命名实体识别[J]. 计算机
工程与应用, 2024, 60(15): 161-169.
LIN Lingde, LIU Na, XU Zhenshun, LI Ang, LI
Chen. Chinese Medical Named Entity
Recognition Based on Multi-Layer Dynamic
Fusion[J]. Computer Engineering and
Applications, 2024, 60(15): 161-169.
[29] Li X, Yan H, Qiu X, et al. FLAT: Chinese NER
using flat-lattice transformer[C]//Proceedings of
the 58th Annual Meeting of the Association for
Computational Linguistics. Online: Association
for Computational Linguistics ,2020:6836-6842.
[30] 乔锐,杨笑然,黄文亢.基于 Bret 与模型融合的医
疗命名实体识别[C]//全国知识图谱与语义计算
会议评估任务论文集.杭州:[s.n.],2019:1-6.
QIAO R,YANG X R,HUANG W K. Medical
named entity recognition based on Bret and model
fusion [C]//Proceedings of Evaluation Tasks at the
China Conference on Knowledge Graph and
Semantic Computing. Hangzhou:[s. n.],
2019:1-6.(in Chinese).
[31] 陈明, 刘蓉, 张晔. 基于多重注意力机制的中
文医疗实体识别[J]. 计算机工程, 2023, 49(6):
314-320.
CHEN Ming, LIU Rong, ZHANG Ye. Chinese
Medical Entity Recognition Based on Multiple
Attention Mechanism[J]. Computer Engineering,
2023, 49(6): 314-320.
[32] Wang C, Wang H, Zhuang H, et al. Chinese
medical named entity recognition based on
multi-granularity semantic dictionary and
multimodal tree[J]. Journal of biomedical
informatics, 2020, 111: 103583.
[33] Wu S, Song X, Feng Z. MECT: Multi-metadata
embedding based cross-transformer for Chinese
named entity recognition[C]// Proceedings of the
59th Annual Meeting of the Association for
Computational Linguistics and the 11th
International Joint Conference on Natural
Language Processing (Volume 1: Long Papers).
Online : Association for Computational
Linguistics,2021:1529-1539.
[34] 陆鑫涛,孙丽萍,凌晨,童子龙,刘佳霖,汤其宇.融
入拼音与词性特征的中文电子病历命名实体识
别 [J/OL]. 小 型 微 型 计 算 机 系统 ,1-12[2024-12-30].http://kns.cnki.net/kcms/det
ail/21.1106.TP.20240228.1116.013.html.
LU Xintao,SUN Liping,LING Chen,TONG
Zilong,LIU Jialin,TANG Qiyu. Named Entity
Recognition of Chinese Electronic Health
Records Incorporating Phonetic and
Part-of-speech Features[J/OL] Journal of Chinese
Computer
Systems,1-12[2024-12-30].http://kns.cnki.net/kc
ms/detail/21.1106.TP.20240228.1116.013.html.
|