[1] 许青,张龄之,梁琛,等.基于联合时序场景和改进 TCN 的
高比例新能源电网负荷预测[J].广东电力, 2024,37(01):
1-7.
Xu Q, Zhang Ling-Zhi, Liang Chen, et al. High proportion
new energy grid load forecasting based on joint time series
scenario and improved TCN [J]. Guangdong Electric Power, 2019,37(01):1-7.
[2] 王保义,邓晓平,张桂青,等.基于高低频数据融合的非侵
入式负荷监测系统设计与应用[J].建筑科学,2024,40(10):
62-69+142.
Design and application of non-invasive load monitoring
System based on high and low frequency data fusion [J].
Building Science, 2019,40(10):62-69+142.
[3] Jonathan Ho, Ajay Jain, Pieter Abbeel. Denoising diffusion
probabilistic models[J]. arXiv preprint arXiv: 2006.11239,
2020.
[4] Zhifeng Kong, Wei Ping, Jiaji Huang, et al. DiffWave: A
Versatile Diffusion Model for Audio Synthesis[J]. arXiv
preprint arXiv:2009.09761,2021.
[5] Haksoo Lim, Minjung Kim, Sewon Park, et al. Regular
time-series generation using sgm. arXiv preprint arXiv:
2301.08518, 2023.
[6] Marcel Kollovieh, Abdul Fatir Ansari, Michael BohlkeSchneider, et al. Predict, refine, synthesize: Self-guiding
diffusion models for probabilistic time series forecasting.
arXiv preprint arXiv:2307.11494, 2023.
[7] Andrea Coletta, Sriram Gopalakrishan, Daniel Borrajo, et
al. On the Constrained Time-Series Generation Problem[J].
arXiv preprint arXiv:2307.01717,2023.
[8] Elizabeth Fons, Alejandro Sztrajman, Yousef El-laham, et
al. Hypertime: Implicit neural representation for time
series.arXiv preprint arXiv:2208.05836,2022.
[9] Ren, L., Wang, H., Laili, Y. Diff-MTS: TemporalAugmented Conditional Diffusion-Based AIGC for
Industrial Time Series Towards the Large Model Era.
arXiv preprint arXiv:2407.11501, 2024.
[10] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, et
al. Generative Adversarial Networks[J]. arXiv preprint
arXiv:1406.2661,2014.
[11] Mogren O. C-RNN-GAN: Continuous recurrent neural
networks with adversarial t raining[J]. arXiv preprint
arXiv:1611.09904, 2016.
[12] Mykhailo Lohachov , Ryoji Korei , Kazuo Oki, et al.
RNN-Based Approach for Broccoli Harvest Time
Forecast[J], agronomy,2024,14(2),361.
[13] Z. Masood, R. Gantassi, Y. Choi. Enhancing Short-Term
Electric Load Forecasting for Households Using Quantile
LSTM and Clustering-Based Probabilistic Approach[J],
IEEE Access,2024,12:77257-77268.
[14] Yoon J, Jarrett D, Van der Schaar M. Time-series
generative adversarial networks[J]. Advances in neural
information processing systems, 2019, 32.
[15] Daniel Jarrett, Ioana Bica, Mihaela van der Schaar.
Time-series generation by contrastive imitation. Advances
in Neural Information Processing Systems, 34:28968–
28982, 2021a.
[16] Abhyuday Desai, Cynthia Freeman, Zuhui Wang, et al.
Timevae: A variational auto-encoder for multivariate time
series generation[J]. arXiv preprint arXiv:2111.08095,
2021.
[17] Diederik P Kingma, Max Welling. Auto-Encoding
Variational Bayes[J]. arXiv preprint arXiv:1312.6114,
2022.
[18] Kashif Rasul, Calvin Seward, Ingmar Schuster, et alAutoregressive denoising diffusion models for multivariate
probabilistic time series forecasting. In International
Conference on Machine Learning, pp. 8857–8868. PMLR,
2021.
[19] Yusuke Tashiro, Jiaming Song, Yang Song, et al. Csdi:
Conditional score-based diffusion models for probabilistic
time series imputation, 2021.
[20] Juan Miguel Lopez Alcaraz, Nils Strodthoff.
Diffusion-based time series imputation and forecasting
with structured state space models. arXiv preprint arXiv:
2208.09399, 2022.
[21] Yuxin Li, Wenchao Chen, Xinyue Hu, et al. TransformerModulated Diffusion Models for Probabilistic Multivariate
Time Series Forecasting. International Conference on
Learning Representations, 2024.
[22] N. Lin, P. Palensky, and P. P. Vergara. EnergyDiff:
Universal Time-Series Energy Data Generation using
Diffusion Models, Journal of IEEE Class Files, vol. 18, no.
9, pp. 1–10, Jun. 2024.
[23] Qingsong Wen, Zhe Zhang, Yan Li et al. Fast robuststl:
Efficient and robust seasonal-trend decomposition for time
series with complex patterns. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 2203–2213,2020.
[24] Alexander Dokumentov , Rob J. Hyndman. STR:
Seasonal-Trend Decomposition Using Regression[J].
arXiv preprint arXiv:2009.05894,2021.
[25] Haixu Wu, Jiehui Xu, Jianmin Wang,et al,Autoformer:
Decomposition Transformers with Auto-Correlation for
Long-Term Series Forecasting[C]//35th Conference on
Neural Information Processing Systems.2021,34:22419-
22430.
[26] Xiyuan Zhang, Xiaoyong Jin, Karthick Gopalswamy, et al.
First De-Trend then Attend:Rethinking Attention for
Time-Series Forecasting[C]//36th Conference on Neural
Information Processing Systems,2022.
[27] Misra, D., Nalamada, T., Arasanipalai, A. U., et al.
Rotate to Attend: Convolutional Triplet Attention Module.
arXiv preprint arXiv:2010.03045,2020.
[28] Arthur Gretton, Karsten Borgwardt, Malte J. Rasch, et al. A
Kernel Method for the Two-Sample Problem. arXiv
preprint arXiv: 0805.2368, 2008.
[29] Jeha Paul, Bohlke-Schneider Michael, Mercado Pedro, et al.
Psa-gan: Progressive self attention gans for synthetic time
series[J]. arXiv preprint arXiv:2108.00981, 2022.
[30] Hao Ni, Lukasz Szpruch, Magnus Wiese, et al. Conditional
sig-wasserstein gans for time series generation. arXiv
preprint arXiv:2006.05421, 2020.
[31] Zhihan Yue, Yujing Wang, Juanyong Duan, et al. Ts2vec:
Towards universal representation of time series[J]. In
Proceedings ofthe AAAI Conference on Artificial
Intelligence, 2022, 36, 8980–8987.
[32] Tianlin Xu, Li Kevin Wenliang, Michael Munn, et al.
Cot-gan: Generating sequential data via causal optimal
transport[J]. Advances in neural information processing
systems, 33:8798–8809, 2020.
[33] 孟祥福,石皓源.基于 Transformer 模型的时序数据预测方
法综述[J].计算机科学与探索,2025,19(01):45-64.
Meng Xiangfu, Shi Haoyuan. Review of time series data
prediction methods based on Transformer model [J].
Computer Science and Exploration, 2019,19(01):45-64.
|