[1] 马恒志, 钱育蓉, 冷洪勇, 等. 知识图谱嵌入研究进展
综述[J/OL].计算机工程:1-25[2024-11-29].https://doi.org/
10.19678/j.issn.1000-3428.0068386.
Ma H Z, Qian Y R, Len H Y, Wu H P, Tao W B, Zhang
Yiyang. Overview on Knowledge Graph Embedding
Research[J/OL].Computer Engineering1-25[2024-11-29].https://doi.org/10.19678/j.issn.1000-342
8.0068386.
[2] Auer S, Bizer C, Kobilarov G, et al. DBpedia: A Nucleus
for a Web of Open Data[C]//The Semantic Web. Berlin,
Heidelberg: Springer, 2007: 722-735.
[3] Bollacker K, Evans C, Paritosh P, et al. Freebase: a
collaboratively created graph database for structuring
human knowledge[C]//Proceedings of the 2008 ACM
SIGMOD international conference on Management of data.
New York, NY, USA: Association for Computing
Machinery, 2008: 1247-1250.
[4] Suchanek F M, Kasneci G, Weikum G. Yago: a core of
semantic knowledge[C]//Proceedings of the 16th
international conference on World Wide Web. New York,
USA: ACM Press, 2007: 697-706.
[5] 张文豪, 徐贞顺, 刘纳, 等. 知识图谱补全方法研究综
述[J]. 计算机工程与应用, 2024, 60(12): 61-73.
Zhang W H, Xu Z S, Liu N, et al. Overview of Knowledge
Graph Completion Methods[J]. Computer Engineering and
Applications, 2024, 60(12): 61-73.
[6] Bordes A, Usunier N, Garcia-durán A, et al. Translating
embeddings for modeling multi-relational data[C]//
Proceedings of the 27th Conference on Neural Information
Processing Systems. Cambridge, USA:MIT Press, 2013:
2787-2795.
[7] Wang Z, Zhang J, Feng J, et al. Knowledge graph
embedding by translating on hyperplanes[C]//Proceedings
of the 38 th AAAI Conference on Artificial Intelligence.
Palo Alto, CA: AAAI Press, 2014: 1112-1119.
[8] Lin Y, Liu Z, Sun M, et al. Learning entity and relation
embeddings for knowledge graph completion[C]//
Proceedings of the 2015 AAAI Conference on Artificial
Intelligence. Palo Alto, CA: AAAI Press, 2015:
2181-2187.
[9] Li J, Su X, Zhang F, et al. TransERR: Translation-based
Knowledge Graph Embedding via Efficient Relation
Rotation[C]//Proceedings of the 2024 Joint International
Conference on Computational Linguistics, Language
Resources and Evaluation (LREC-COLING 2024). Torino,
Italia: ELRA and ICCL, 2024: 16727-16737.
[10] Nickel M, Tresp V, Kriegel H P. three-way model for
collective learning on multi-relational data[C]//
Proceedings of the 2011 International Conference on
Machine Learning. New York: JMLR, 2011:
3104482-3104584.
[11] Yang B, Yih W, He X, et al. Embedding entities and
relations for learning and inference in knowledge
bases[EB/OL]. [2023-11-14].
https://arxiv.org/pdf/1412.6575.pdf.
[12] Trouillon T, Welbl J, Riedel S, et al. Complex embeddings
for simple link prediction[C]//Proceedings of the 2016
International Conference on Machine Learning. New York:
PMLR, 2016: 2071-2080.
[13] Balažević I, Allen C, Hospedales T M. Tucker: Tensor
factorization for knowledge graph completion[J]. arXiv
preprint arXiv:1901.09590, 2019.
[14] Dettmers T, Minervini P, Stenetorp P, et al. Convolutional
2D knowledge graph embeddings[C]//Proceedings of the
32th AAAI Conference on Artificial Intelligence[C]//
Proceedings of the 32th AAAI Conference on Artificial
Intelligence. Palo Alto, CA: AAAI Pres, 2018: 1811-1818.
[15] Shang C, Tang Y, Huang J, et al. End-to-end
Structure-Aware Convolutional Networks for Knowledge
Base Completion[C]//Proceedings of the AAAI
Conference on Artificial Intelligence 2019: 3060-3067.
[16] Sun X, Chen Q, Hao M, et al. Mconvkgc: a novel
multi-channel convolutional model for knowledge graph
completion[J]. Computing, 2024, 106(3): 915-937.
[17] Huang J, Lu T, Zhu J, et al. Multi-relational knowledge
graph completion method with local information fusion[J].
Applied Intelligence, 2022, 52(7): 7985-7994.
[18] 马坤, 安敬民, 李冠宇. 动态聚合实体和关系上下文的
知识图谱补全[J]. 计算机工程, 2023, 49(8): 77-84, 95.
Ma K, An J M, Li G Y. Knowledge Graph Completion
with Dynamically Aggregating Context of Entity and
Relation[J]. Computer Engineering, 2023, 49(8):77-84, 95.
[19] Lin Y, Liu Z, Luan H, et al. Modeling relation paths for
representation learning of knowledge
bases[C]//Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing.
Stroudsburg: ACL, 2015: 705-714.
[20] Zhu Q, Zhou X, Tan J, et al. Knowledge base reasoning
with convolutional-based recurrent neural networks[J].
IEEE Transactions on Knowledge and Data Engineering,2019, 33(5): 2015-2028.
[21] Wang H, Song D, Wu Z, et al. A collaborative learning
framework for knowledge graph embedding and
reasoning[J]. Knowledge-Based Systems, 2024, 289:
111505.
[22] Yin H, Zhong J, Li R, et al. High-Order Neighbors Aware
Representation Learning for Knowledge Graph
Completion[J]. IEEE Transactions on Neural Networks
and Learning Systems,
PP[2024-11-21].DOI:10.1109/TNNLS.2024.3383873.
[23] Zhang X, Zhang C, Guo J, et al. Graph attention network
with dynamic representation of relations for knowledge
graph completion[J]. Expert Systems with Applications,
2023, 219: 119616.
[24] Pei S, Kou Z, Zhang Q, et al. Few-shot low-resource
knowledge graph completion with multi-view task
representation generation[C]//Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and
Data Mining. 2023: 1862-1871.
[25] Yin H, Zhong J, Li R, et al. Disentangled Relational Graph
Neural Network with Contrastive Learning for knowledge
graph completion[J]. Knowledge-Based Systems, 2024,
295: 111828.
[26] Xiang Y, He H, Yu Z, et al. Concept-driven representation
learning model for knowledge graph completion[J]. Expert
Systems with Applications, 2025: 126297.
[27] Li D, Miao S, Zhao B, et al. ConvHiA: convolutional
network with hierarchical attention for knowledge graph
multi-hop reasoning[J]. International Journal of Machine
Learning and Cybernetics, 2023, 14(7): 2301-2315.
|