[1] YE Y F, WANG X, SUN S Z, et al. A new sea ice
concentration retrieval algorithm from thermal infrared
imagery [J]. Int J Digit Earth, 2024, 17(1).
[2] KAPSCH M L, GRAVERSEN R G, TJERNSTRöM M, etal. The Effect of Downwelling Longwave and Shortwave
Radiation on Arctic Summer Sea Ice [J]. J Climate, 2016,
29(3): 1143-59.
[3] 于淼.利用 RadarSat-2 SAR 影像反演北极夏季海冰厚度
的研究[D].大连理工大学, 2018.
YU Miao, Study on sea ice thickness retrieval in Arctic
summer using RadarSat-2 SAR imagery, [D]. Dalian
University of Technology, 2018.
[4] Shamshiri R, Eide E, Høyland K V. Spatio-temporal
distribution of sea-ice thickness using a machine learning
approach with Google Earth Engine and Sentinel-1 GRD
data[J]. Remote Sensing of Environment, 2022, 270:
112851.
[5] Zhao Y, Sun Z, Li W, et al. Sea Ice Type and Thickness
Identification Based on Vibration Sensor Networks and
Machine Learning[J]. IEEE Transactions on
Instrumentation and Measurement, 2023, 72: 1-11.
[6] Koenig L, Martin S, Studinger M, et al. Polar airborne
observations fill gap in satellite data[J]. Eos, Transactions
American Geophysical Union, 2010, 91(38): 333-334.
[7] Martin S, Drucker R, Kwok R, et al. Estimation of the thin
ice thickness and heat flux for the Chukchi Sea Alaskan
coast polynya from Special Sensor Microwave/Imager data,
1990–2001[J]. Journal of Geophysical Research: Oceans,
2004, 109(C10).
[8] Yu Y, Rothrock D A. Thin ice thickness from satellite
thermal imagery[J]. Journal of Geophysical Research:
Oceans, 1996, 101(C11): 25753-25766.
[9] 朱星源,苏洁,宋梅,等.基于 MODIS 数据的渤海海冰厚度
反演算法优化[J].海洋学报,2022,44(12):70-83.
ZHU Xingyuan, SU Jie, SONG Mei, et al. Optimization of
the Bohai Sea ice thickness retrieval algorithm based on
MODIS data [J]. Haiyang Xuebao, 2023, 44(12): 70-83.
10.12284/hyxb2022141
[10] 郭井学.基于电磁感应理论的极地海冰厚度探测研究[D].
吉林大学,2007.
GUO Jinxue. Research of electromagnetic-inductive
theory on the measurements of polar sea-ice thickness, [D].
Jilin University, 2007.
[11] Karvonen J, Similä M, Hallikainen M, et al. Estimation of
Equivalent Deformed Ice Thickness from Baltic Sea
Ice[C]. 2005.
[12] Zhang X, Dierking W, Zhang J, et al. Retrieval of the
thickness of undeformed sea ice from simulated C-band
compact polarimetric SAR images[J]. The Cryosphere,
2016, 10(4): 1529-1545.
[13] 于淼,卢鹏,李志军,等.基于 SAR 图像纹理的北极海冰厚
度的反演研究[J].极地研究,2018,30(03):329-337.
YU Miao, LU Peng, LI Zhijun, et al. Arctic sea ice
thickness retrieval based on SAR image texture feature [J].
Chinese Journal of Polar Research, 2018, 30(3): 329.
10.13679/j.jdyj.20170035
[14] Naoki K, Ukita J, Nishio F, et al. Thin sea ice thickness as
inferred from passive microwave and in situ
observations[J]. Journal of Geophysical Research: Oceans,
2008, 113(C2).
[15] Herbert C, Munoz-Martin J F, Llaveria D, et al. Sea ice
thickness estimation based on regression neural networks
using L-band microwave radiometry data from the FSSCat
mission[J]. Remote Sensing, 2021, 13(7): 1366.
[16] Tateyama K, Enomoto H, Toyota T, et al. Sea ice thickness
estimated from passive microwave radiometers[J]. Polar
meteorology and glaciology, 2002, 16: 15-31.
[17] Junhwa C, Cheol H K. Retrieval of daily sea ice thickness
from AMSR2 passive microwave data using ensemble
convolutional neural networks[J]. GIScience & Remote
Sensing,2021,58(6):812-830.
[18] 王志勇,张梦悦,于亚冉,等.一种融合纹理特征与 NDVI
的随机森林海冰精细分类方法[J].海洋学报, 2021.
WANG Zhiyong, ZHANG Mengyue, YU Yaran, et al. A
fine classification method for sea ice based on random
forest combining texture feature and NDVI [J]. Haiyang
Xuebao, 2021
[19] Khaleghian, S., Ullah, H., Kræmer, T., Hughes, N., Eltoft,
T., & Marinoni, A. (2021). Sea ice classification of SAR
imagery based on convolution neural networks. Remote
Sensing, 13(9), 1734.
[20] 黄骏捷. 基于主动学习与多特征增强的 GBDT 海冰厚
度一体化反演[D]. 上海海洋大学.2024.
HUANG Junjie. Integrated inversion of GBDT sea ice
thickness based on active learning and multi-feature
enhancement[D]. Shanghai Ocean University. 2024.
[21] HY. Li, QY. Yan, WM. Huang. Retrieval of sea ice
thickness from FY-3E data using Random Forest
method[J]. Advances in Space Research, 2024, 74(1):
130-144.
[22] 宋泉臻 , 陈作钧 , 秦品乐 , 等 . 基 于 超 像 素 引 导 的
Transformer 低光图像去噪方法[J].计算机工程,2025.
SONG Quanzhen., CHEN Zuojun, QIN Pinle, et al.
Superpixel Guide for Transformer Low-light Image
Denoising Method. Computer Engineering,2025.
[23] Okuyama A, Imaoka K. Intercalibration of advancedmicrowave scanning radiometer-2 (AMSR2) brightness
temperature[J]. IEEE Transactions on Geoscience and
Remote Sensing, 2015, 53(8): 4568-4577.
[24] Tian-Kunze X, Kaleschke L, Maaß N, et al.
SMOS-derived thin sea ice thickness: algorithm baseline,
product specifications and initial verification[J]. The
Cryosphere, 2014, 8(3): 997-1018.
[25] 郭凤莲,赵仁宇,王维滨.无源微波遥感技术在海冰测厚
中的应用研究[J].遥感学报,2000,(02):112-117.
GUO Fenglian, ZHAO Renyu, WANG Weibin.
Application of passive microwave remote sensing to sea
ice thickness measurement [J]. Journal of Remote Sensing,
2000, 4(2): 112-117.
[26] 刘起东,刘超越,邱紫鑫,等. 基于时间感知Transformer的
交通流预测方法[J]. 计算机科学,2023:1-13.
LIU Qidong, LIU Chaoyue, QIU Zixin, et al. Traffic flow
prediction method based on time-aware Transformer[J].
Computer Science, 2023:1-13.
[27] Petkovski E, Marri I, Cristaldi L, et al. State of Health
Estimation Procedure for Lithium-Ion Batteries Using
Partial Discharge Data and Support Vector Regression[J].
Energies, 2023,17(1): 206.
[28] Bilei G, Yining W, Yanlin S. Fault diagnosis method for
hydro-power plants with Bi-LSTM knowledge graph aided
by attention scheme[J]. Journal of
Vibroengineering,2023,25(8):1629-1641.
[29] Ernesto M P J, Caisse A, Silva A J C. Hyperspectral
dimensionality reduction based on SAE-1DCNN feature
selection approach[J]. Applied
Geomatics,2023,15(4):991-1004.
[30] Gao Y, Xia X, Guo Y. A Thermal Error Prediction Method
of High-Speed Motorized Spindle Based on Pelican
Optimization Algorithm and CNN-LSTM[J].Applied
Sciences,2023,14(1):381.
[31] Comiso J C, Cavalieri D J, Markus T. Sea ice
concentration, ice temperature, and snow depth using
AMSR-E data[J]. IEEE Transactions on Geoscience and
Remote Sensing, 2003, 41(2): 243-252.
|