作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程

• •    

基于SIT-TransNET的被动微波海冰厚度反演

  • 发布日期:2025-04-09

Passive microwave sea ice thickness inversion based on SIT-TransNET

  • Published:2025-04-09

摘要: 海冰厚度是全球气候变化研究中的关键参数之一,其在调节地球气候系统、海洋环流和热量交换中具有重要作用。但是由于海冰的物理特性高度变化的影响,使得海冰厚度的精确反演面临巨大挑战。针对上述问题,本文提出了一种多特征融合和改进Transformer的被动微波遥感海冰厚度反演方法SIT-TransNET,该方法利用AMSR2卫星的亮度温度数据,并结合辅助数据(包括雪表面温度、海面盐度和1.4GHz亮度温度),探讨了这些数据与海冰厚度之间的复杂关联,分析了不同特征的重要性并通过建立不同的特征融合方案,加强了对海冰厚度的有效表征;通过SIT-TransNet模型的自注意力机制和多头注意力机制捕捉不同特征及组合对于海冰厚度反演的贡献,并能够动态调整不同特征的权重,实现海冰厚度的精确反演。实验结果表明,相比其他方法,本文提出的SIT-TransNET方法显著提高了海冰厚度反演的精度,决定系数(R²)达到了0.96,均方根误差(RMSE)为9cm,表明此方法适用于海冰厚度反演,为实现大范围海冰厚度监测和气候变化研究提供了有效的技术手段。

Abstract: Sea ice thickness, a key parameter in global climate change research, plays a vital role in regulating the Earth's climate system, ocean circulation, and heat exchange. However, due to the influence of the height change of the physical characteristics of sea ice, the accurate inversion of sea ice thickness faces great challenges. In response to these issues, this paper presents an improved passive microwave remote sensing method for sea ice thickness inversion, SIT-TransNET, which utilizes brightness temperature data from the AMSR2 satellite. The method incorporates auxiliary data, including surface snow temperature, sea surface salinity, and 1.4 GHz brightness temperature, to explore complex correlations with sea ice thickness. Analysis of the importance of different features and the establishment of various feature fusion schemes enhance the effective representation of sea ice thickness. Through the self-attention mechanism and multi-head attention mechanism of the SIT-TransNET model, contributions of different features and their combinations to sea ice thickness inversion are captured, allowing dynamic adjustment of feature weights to achieve precise inversion of sea ice thickness. Experimental results demonstrate that the SIT-TransNET method significantly improves the accuracy of sea ice thickness inversion, with a coefficient of determination (R²) reaching 0.96 and a root mean square error (RMSE) of 6 cm. This method proves suitable for sea ice thickness inversion and provides an effective technical means for large-scale sea ice thickness monitoring and climate change research.