[1] 汤军, 高洪超, 余涛等. 电力市场环境下超大城市虚拟电厂的建设理念与创新实践[J].电网技术, 2025, 49(01): 103-112.
TANG J, GAO H C, YU T, et al. Construction Concept and Innovative Practices of Virtual Power Plants in Megacities Under
Electricity Market Environment[J]. Power System Technology, 2025, 49(01): 103-112.
[2] 何光宇,肖居承,范帅等. 适应新型电力系统的电力互替品市场 ——(二)商品形态及形成机理[J]. 电力系统自动化, 2024,
48(19): 28-39.
HE G Y, XIAO J C, FAN S, et al. Adaptation of power alternatives market to new power system - (II) Commodity form and
formation mechanism[J]. Power System Automation, 2024, 48(19): 28-39.
[3] MACIEJOWSKA K. Assessing the impact of renewable energy sources on the electricity price level and variability - A quantile
regression approach[J]. Energy Economics, 2020, 85: 104532.
[4] LOIZIDIS S, KYPRIANOU A, E. GEORGHIOU G. Electricity market price forecasting using ELM and Bootstrap analysis: A
case study of the German and Finnish Day-Ahead markets[J]. Applied Energy, 2024, 363: 123058. [5] MENG A B, ZHU J B, YUAN B P, et al. Day-ahead electricity price prediction in multi-price zones based on multi-view fusion
spatio-temporal graph neural network[J]. Applied Energy, 2024, 369: 123553.
[6] GHIMIRE S, C. DEO R, CASILLAS-PÉREZ D, et al. Two-step deep learning framework with error compensation technique for
short-term, half-hourly electricity price forecasting[J]. Applied Energy, 2024, 353: 122059.
[7] LIU J X, LV Z Q, ZHAO L. A dual-optimization building energy prediction framework based on improved dung beetle algorithm,
variational mode decomposition and deep learning[J]. Energy & Buildings, 2025, 328: 115143.
[8] WANG Y, LIU P Z , ZHU K, et al. A Garlic-Price-Prediction Approach Based on Combined LSTM and GARCH-Family
Model[J]. Applied Sciences, 2022, 12(22): 11366-11366.
[9] ZHOU H T, XUN X, WANG L, et al. Self-Adaptive Clustering Model Based on Variable Time-Series Similarity Measure
Analysis for V2G Electricity Price Prediction[J]. Applied Sciences, 2025, 15(4): 2069-2069.
[10] WANG Y Y, SUN S D, DE O, et al. Short-term Electricity Price Prediction Using Grey Relation Analysis, SVM, and Amended
Squirrel Search Optimizer[J]. JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2024, 19(4): 2059-2075.
[11] WANG P, XU K Q, DING Z H, et al. An Online Electricity Market Price Forecasting Method Via Random Forest[J]. IEEE
Transactions on Industry Applications, 2022, 58(6): 7013-7021.
[12] DENG Z F, LIU C X, ZHU Z L. Inter-hours rolling scheduling of behind-the-meter storage operating systems using electricity
price forecasting based on deep convolutional neural network[J]. International Journal of Electrical Power & Energy Systems,
2021, 125: 106499.
[13] RANI J H R, VICTOIRE A A T. A hybrid Elman recurrent neural network, group search optimization, and refined VMD-based
framework for multi-step ahead electricity price forecasting[J]. Soft Computing, 2019, 23(18): 1-22.
[14] LI W, MIKE B D. Day-ahead electricity price prediction applying hybrid models of LSTM-based deep learning methods and
feature selection algorithms under consideration of market coupling[J]. Energy, 2021, 237: 121543.
[15] IQBAL R, MOKHLIS H, KHAIRUDDIN M S A, et al. Optimized Gated Recurrent Unit for Mid-Term Electricity Price
Forecasting[J]. Computer Systems Science and Engineering, 2022, 43(2): 817-832.
[16] HUANG C J, SHEN Y M, CEHN Y H, et al. A novel hybrid deep neural network model for short‐term electricity price
forecasting[J]. International Journal of Energy Research, 2020, 45(2): 2511-2532.
[17] ZHANG J L, TAN Z F, WEI Y M. An adaptive hybrid model for short term electricity price forecasting[J]. Applied Energy, 2020,
258: 114087.
[18] XU Y Z, HUANG X, ZHENG X D, et al. VMD-ATT-LSTM electricity price prediction based on grey wolf optimization
algorithm in electricity markets considering renewable energy[J]. Renewable Energy, 2024, 236: 121408.
[19] 杨建军,唐东明,李驹光等. 基于改进人工蜂鸟算法的 MEC 任务卸载策略[J]. 计算机工程, 2024, 50(10): 291-301.
YANG J J, TANG D M, LI J G. Task Offloading Strategy of MEC Based on Improved Artificial Hummingbird Algorithm[J].
Computer Engineering, 2024, 50(10): 291-301.
[20] 贾硕,林士飏,杨苗会等. 改进鲸鱼优化 GRU 的窄路短时车流量预测[J]. 计算机工程, 2025, 51(02): 111-125.
JIA S, LIN S Y, YANG M. Short-Time Traffic Flow Prediction on Narrow Roads Based on Improved Whale-Optimized
GRU[J]. Computer Engineering, 2025, 51(02): 111-125.
[21] HUSSIEN M R, ABOHANY A A, MAGEED E A A A, et al. Improved Binary Meerkat Optimization Algorithm for efficient
feature selection of supervised learning classification[J]. Knowledge-Based Systems, 2024, 292: 111616.
[22] DRAGOMIRETSKIY K; ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3):
531-544.
[23] MOHAMED A, REDA M, MOHAMED A. Crested Porcupine Optimizer: A new nature-inspired metaheuristic [J].
Knowledge-Based Systems, 2024, 284: 111257.
[24] XIANG N, ZHANG T Y, LIU Y. State of health prediction for Lithium-Ion batteries using extended long Short-Term memory
network and frequency enhanced channel attention mechanism with Variational mode Decomposition[J]. Measurement, 2025,249: 117084.
[25] 刘慧鑫,沈晓东,魏泽涛等. 基于校准窗口集成与耦合市场特征的可解释双层日前电价预测[J]. 中国电机工程学报, 2024,
44(4): 1272-1286.
LIU H X, SHEN X D, WEI Z T, et al. Interpretable double-layer day-ahead tariff prediction based on calibration window
integration and coupled market characteristics[J]. Chinese Journal of Electrical Engineering, 2024, 44(4): 1272-1286.
[26] 王明虎,石智奎,苏佳等. 基于 RoBERTa 和图增强 Transformer 的序列推荐方法[J]. 计算机工程, 2024, 50(4): 121-131.
WANG M H, SHI Z K, SU J, et al. A sequence recommendation method based on RoBERTa and graph-enhanced
Transformer[J]. Computer Engineering, 2024, 50(4): 121-131.
|