[1] Yang Q, Liu Y, Chen T, et al. Federated machine learning: Concept and
applications[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2019, 10(2): 1-19.
[2] Blanchard P, El Mhamdi E M, Guerraoui R, et al. Machine learning
with adversaries: Byzantine tolerant gradient descent[J]. Advances in
neural information processing systems, 2017, 30.
[3] Guerraoui R, Rouault S. The hidden vulnerability of distributed learning in byzantium[C]//International Conference on Machine Learning.
PMLR, 2018: 3521-3530.
[4] Kang J, Xiong Z, Niyato D, et al. Incentive mechanism for reliable
federated learning: A joint optimization approach to combining reputation and contract theory[J]. IEEE Internet of Things Journal, 2019, 6(6):
10700-10714.
[5] Zhu L, Liu Z, Han S. Deep leakage from gradients[J]. Advances in
neural information processing systems, 2019, 32.
[6] Zhao B, Mopuri K R, Bilen H. idlg: Improved deep leakage from
gradients[J]. arXiv preprint arXiv:2001.02610, 2020.
[7] Hao M, Li H, Xu G, et al. Towards efficient and privacy-preserving
federated deep learning[C]//ICC 2019-2019 IEEE international conference on communications (ICC). IEEE, 2019: 1-6.
[8] McMahan H B, Ramage D, Talwar K, et al. Learning differentially
private recurrent language models[J]. arXiv preprint arXiv:1710.06963,2017.
[9] Deng Y, Lyu F, Ren J, et al. AUCTION: Automated and quality-aware
client selection framework for efficient federated learning[J]. IEEE
Transactions on Parallel and Distributed Systems, 2021, 33(8):
1996-2009.
[10] Wang Z, Li J, Hu J, et al. Towards privacy-driven truthful incentives
for mobile crowdsensing under untrusted platform[J]. IEEE Transactions on Mobile Computing, 2021, 22(2): 1198-1212.
[11] Jiao Y, Wang P, Niyato D, et al. Toward an automated auction framework for wireless federated learning services market[J]. IEEE Transactions on Mobile Computing, 2020, 20(10): 3034-3048.
[12] 刘艺璇,陈红,刘宇涵,等.联邦学习中的隐私保护技术[J].软件学
报,2022,33(03):1057-1092.DOI:10.13328/j.cnki.jos.006446.
LIU Y X,CHEN H,LIU Y H,et al. Privacy Protection Technology in
Federated Learning[J]. Journal of Software,2022, 33(03):1057-1092.
[13] Lyu L, Chen C. A novel attribute reconstruction attack in federated
learning[J]. arXiv preprint arXiv:2108.06910, 2021.
[14] Gu Y, Bai Y, Xu S. CS-MIA: Membership inference attack based on
prediction confidence series in federated learning[J]. Journal of Information Security and Applications, 2022, 67: 103201.
[15] Hu R, Guo Y, Gong Y. Federated learning with sparsified model perturbation: Improving accuracy under client-level differential privacy[J].
IEEE Transactions on Mobile Computing, 2023.
[16] McMahan B, Moore E, Ramage D, et al. Communication-efficient
learning of deep networks from decentralized data[C]//Artificial intelligence and statistics. PMLR, 2017: 1273-1282.
[17] Wei K, Li J, Ding M, et al. Federated learning with differential privacy:
Algorithms and performance analysis[J]. IEEE transactions on information forensics and security, 2020, 15: 3454-3469.
[18] Zhao L, Wang Q, Zou Q, et al. Privacy-preserving collaborative deep
learning with unreliable participants[J]. IEEE Transactions on Information Forensics and Security, 2019, 15: 1486-1500.
[19] 康海燕,冀源蕊.基于本地化差分隐私的联邦学习方法研究[J].通信
学报,2022,43(10):94-105.
KANG H Y, JI. Y R Research on federated learning approach based
on local differential privacy[J]. Journal on Communications, 2022,
43(10): 94-105
[20] Li Y, Du W, Han L, et al. A Communication-Efficient, Privacy-Preserving Federated Learning Algorithm Based on Two-Stage
Gradient Pruning and Differentiated Differential Privacy[J]. Sensors,
2023, 23(23): 9305.
[21] Varun M, Feng S, Wang H, et al. Towards Accurate and Stronger
Local Differential Privacy for Federated Learning with Staircase
Randomized Response[C]//Proceedings of the Fourteenth ACM
Conference on Data and Application Security and Privacy. 2024:
307-318.
[22] Tian D, Zhou J, Wang Y, et al. Channel access optimization with
adaptive congestion pricing for cognitive vehicular networks: An
evolutionary game approach[J]. IEEE Transactions on Mobile Computing, 2019, 19(4): 803-820.
[23] Chivukula A S, Yang X, Liu W, et al. Game theoretical adversarial
deep learning with variational adversaries[J]. IEEE Transactions on
Knowledge and Data Engineering, 2020, 33(11): 3568-3581.
[24] Myerson R. Analysis of conflict[M]//Game Theory. Harvard Univ.
Press, 1991.
[25] Xu J, Wang S, Zhang N, et al. Reward or penalty: Aligning incentives
of stakeholders in crowdsourcing[J]. IEEE Transactions on Mobile
Computing, 2018, 18(4): 974-985.
[26] Hu R, Gong Y. Trading data for learning: Incentive mechanism for
on-device federated learning[C]//GLOBECOM 2020-2020 IEEE
Global Communications Conference. IEEE, 2020: 1-6.
[27] Sun P, Che H, Wang Z, et al. Pain-FL: Personalized privacy-preserving incentive for federated learning[J]. IEEE Journal on
Selected Areas in Communications, 2021, 39(12): 3805-3820.
[28] Yi Z, Jiao Y, Dai W, et al. A stackelberg incentive mechanism for
wireless federated learning with differential privacy[J]. IEEE Wireless Communications Letters, 2022, 11(9): 1805-1809.
[29] Wang D, Ren J, Wang Z, et al. Privaim: A dual-privacy preserving
and quality-aware incentive mechanism for federated learning[J].
IEEE Transactions on Computers, 2022, 72(7): 1913-1927.
[30] Zheng Z, Hong Y, Li K, et al. An Incentive Mechanism Based on
AoU, Data Quality, and Data Quantity for Federated Learning[C]//2024 27th International Conference on Computer Supported
Cooperative Work in Design (CSCWD). IEEE, 2024: 1832-1837.
[31] Zhang L, Zhu T, Xiong P, et al. A robust game-theoretical federated
learning framework with joint differential privacy[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 35(4): 3333-3346.
[32] 王勇, 李国良, 李开宇. 联邦学习贡献评估综述[J]. 软件学报,
2023, 34(3): 1168-1192.
WANG Y, LI G L, LI K Y. Survey on contribution evaluation for
federated learning[J]. Journal of Software, 2023, 34(3): 1168-1192.
[33] Dwork C, Roth A. The algorithmic foundations of differential privacy[J]. Foundations and Trends® in Theoretical Computer Science,
2014, 9(3–4): 211-407.
[34] Chen Z, Ni T, Zhong H, et al. Differentially private double spectrum
auction with approximate social welfare maximization[J]. IEEE
Transactions on Information Forensics and Security, 2019, 14(11):
2805-2818.[35] Myerson R B. Optimal auction design[J]. Mathematics of operations
research, 1981, 6(1): 58-73.
[36] Deng L. The mnist database of handwritten digit images for machine
learning research [best of the web][J]. IEEE signal processing magazine, 2012, 29(6): 141-142.
[37] Xiao H, Rasul K, Vollgraf R. Fashion-mnist: a novel image dataset
for benchmarking machine learning algorithms[J]. arXiv preprint
arXiv:1708.07747, 2017.
|